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CST
LST

Xi» Yis Zi
K]

[M]
{U}
{F}
E

GLOSSARY

3 - noded Constant Strain Triangle membrane element
6 - noded Linear Strain Triangle membrane element
general global location of node ‘i’

system global stiffness matrix

system global mass matrix

system global displacement vector

system global force vector

Modulus of Elasticity

poisson’s ratio

density

rod element axial stress

membrane element normal stresses
membrane element shear stress
membrane element normal strains

membrane element shear strain

{X}

element coordinate vector:
Rod: {xy, ¥1, 2}, X2, y2, 22},
CST: {Xl, y], Z], Xz, yz, Zz, X3, y3, 23},

LST: {xy, ¥1» 2]» X2, ¥2, 22, X3, ¥3, 23, X4, Y4» 24, X5, ¥5, Z5, Xg» Y6 Zg)
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(kL)

[kg]

{UL}

{Ug)

{q}
[Agl.{bg}
[Anew]
{bnew!}

element stiffness matrix in local coordinates

Rod: 2x2 matrx:

CST: 6x6 matrix;

LST: 12x12 matrix

element stiffness matrix in global coordinates
Rod: 6x6 matrix;

CST: 9x9 matrix.

LST: 18x 18 matrix

element displacement vector in local coordinates
Rod: {u,, uz}T,

CST: {uy, vy, ug, V3, U3, V3}T,

LST: {uy, vy, ug, Vp, U3, V3, Uy, V4, Us, V5, Ug, v6}T
element displacement vector in global coordinates
Rod: {uy, vy, Wy, up, vy, wz}T,

CST: {uy, vy, W}, Up, Vo, Wp, U3, V3, W3}T,

LST: {uy, v, Wy, Ug, V2, W2, U3, V3, W3, Uy, V4, Wy, Us, Vs, W5, Ug, Vg, W6)T
6x6 rod element mass matrix in global coordinates

9x9 CST element mass matrix in global coordinates

stress smoothing polynomial

stress smoothing polynomial coefficients

least squares approximation variables ([Ag}{q}={bg})
normal equations technique matrix ([Apewl=[As]T[Ag))

normal equations tecnique vector ({ bnew}=[AS]T{bs 3]




A eigenvalue/eigenvector solution to [K-AM}{® }={0}

AN eigenvalue/eigenvector solution to | A-ALJ{¥ }={0}

[A) square symmetric matrix where A = (./1\7!)_11((./117!)_l

(1] identity matrix

w undamped circular natural frequency (radians/second)

f undamped natural frequency (cycles/second, Hertz)

L rod element length

(Tl 2x6 rod element transformation matrix

CX, Cy, €2z rod element directional cosines of the local x-axis to the global x,y,z-axis

1;, my, ny CST/LST directional cosines of the local x-axis to the global x-axis

15, my, ny CST/LST directional cosines of the local y-axis to the global y-axis

[B] 3x6 CST element geometry matrix

[D] 3x3 CST element material property matrix

(k] CST element local normal stiffness

(k] CST element local shear stiffness

(A 2x3 membrane directional cosines matrix

[A) 6x9 CST element transformation matrix

P,Q,R node numbers of membrane element ‘i’

11,15, 15 side lengths of membrane element ‘i’

{L} membrane element side length vector = {1}, 15, 13}
b,s, h,a membrane element local geometry properties

{G} membrane element local geometry vector = {b, s, h, a}
aj, a7, a3 LST element global geometry properties (x-direction)

by, by, b3 LST element global geometry properties (y-direction)



{B} LST element global geometry vector = {ay, ay, a3, by. by, b3}

(M} 9x 12 LST element geometry matrix
[N] 9x9 LST element material property/geometry matrix
(C] 3x3 LST element material property matrix
[&] 9x9 LST element material property matrix
[/-\] 12x18 LST element transformation matrix
Ps percent span ratio of any point ‘i’ in spanwise direction
Prc percent chord ratio of any point ‘i’ along root rib in chordwise direction
Prc percent chord ratio of any point ‘i’ along wingtip rib in chordwise direction
B generic shape design variable
X generic sizing design variable
Shape Variables:
XEL x-position of forward/left corner of wing
X AL. x-position of aft/left corner of wing
XFR x-position of forward/right comer of wing
XAR x-position of aft/right corner of wing
YL y-position of left side of wing
YR y-position of right side of wing
o wing sweep (degrees)

Size Variables:
A, rod element ‘i’ cross-sectional area

4 membrane element ‘i’ thickness
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CHAPTER 1
INTRODUCTION

The displacement formulation of the finite element method is the most general and
most widely used technique for structural analysis of airplane configurations. Modern
structural synthesis techniques based on the finite element method have reached a certain
maturity in recent years, and large airplane structures can now be optimized with respect
to sizing type design variables for many load cases subject to a rich variety of constraints
including stress, buckling, frequency, stiffness and aeroelastic constraints (Refs. 1-3).
These structural synthesis capabilities use gradient based nonlinear programming tech-
niques to search for improved designs. For these techniques to be practical a major
improvement was required in computational cost of finite element analyses (needed
repeatedly in the optimization process). Thus, associated with the progress in structural
opUmlzaU(m a new perspective of structural analysis has emerged, namely, structural
analysxs specialized for design optimization application, or what is known as “dcs:gn ori-
ented structural analysis” (Ref. 4). This discipline includes approximation concepts and
methods for obtaining behavior sensitivity information (Ref. 1), all needed to make the
optimization of large structural systems (modeled by thousands of degrees of freedom and
thousands of design variables) practical and cost effective.

In the airplane conceptual and preliminary design stages configuration shape optimiza-
tion is essential. Wings should be allowed to change in planform and airfoil shape. Fuse-
lage structures should be allowed to be shaped simultaneously, and the posiﬁon of wings
and control surfaces should be determined as part of the optimization process. While a
substantial amount of work in the context of structural optimization has been devoted to
structural shape synthesis of solid and machine parts, very little has been done to date in

the area of airplane structures. Moreover, even with the availability of computer graphics



and computer aided design tools, the preparation of a new finite element model for a new
configuration is still too time consuming. It is estimated in Ref. 5 that it would take about
12 months to complete a single structural, loads and aeroelastic design cycle for a high
speed civil transport. A major part of this effort is dedicated to the generation and updates
of the finite element model.

This thesis focuses on techniques for modeling airplane wings for the conceptual and
preliminary design stages using finite elements. The emphasis is on shape optimization.
An automatic mesh generator is developed to efficiently handle planform and airfoil shape
variations. Simple bar and triangular membrane elements are used to represent spar / rib
caps as well as skins and internal webs. Analytic deformation, stress and natural frequency
behavior sensitivities are obtained with respect to shape design variables in addition to the
sizing type design variables. Extensive numerical tests of the resulting modeling technique
are conducted to evaluate its accuracy and economy. The new technique combines advan-
tages of equivalent plate wing modeling (Ref. 6) (ease of model generation and shape sen-
sitivity calculations) with those of finite element models which are general and can handle
local effects and structural discontinuities in real wing structures.

The outline of this work is as follows: in Chapter 2 the two finite element modeling
approaches are discussed. In Chapter 3 wing behavior sensitivities with respect to both
shape and sizing type design variables are derived. Chapter 4 will focus on aspects of
automatic mesh generation while Chapter 5 will deal with issues of finite element model-
ing implementation. In Chapter 6 the three wing models to be analyzed are introduced and
described. Chapter 7 details all results pertaining to wing displacements, stresses and nat-
ural frequencies while Chapter 8 concludes with sensitivity and computational cost

results. Detailed mathematical derivations are given in the appendices.



CHAPTER 2
MODELING CONSIDERATIONS

2.1 Introduction

Two modeling approaches for built up wing structures are described in this chapter.
Both are based on truss (rod) elements for spar and rib caps. Membrane (plane stress) ele-
ments are used for cover skins and spar/rib webs. The motivation for using these simple
models is not only in their simplicity and speed of computation, but mainly because it is
possible to obtain closed form explicit analytic sensitivity of their stiffness and mass
matrices with respect to shape design variables. In the first approach linear rod elements
and constant strain triangular membranes (CST’s) are used. In the second approach linear
rod elements and linear strain triangular membranes (LST’s) are used. Discussion of these
two approaches and guidelines to follow are included in this chapter. In both cases there

are no rotational degrees of freedom in the model.

2.2 CST modeling

The simplest of the two techniques is the one employing the three-noded CST mem-
brane element with a linear rod element. The CST is used to represent all wing cover skin
panels and rib and spar shear webs. The rod element is used to model all rib and spar cap
areas. These are low order elements. Stresses in these elements are constant throughout
their interior and for convergence a large number of elements may be needed.

A finite element capability, then, must include grid refinements that are quick and easy
to perform, and a study of modeling accuracy to establish modeling guidelines as to the

degree of grid refinement required. The possibilities to be investigated include refinement



in the spanwise direction, refinement in the chordwise direction or a combination of the
two. For grid refinement in one direction only, more nodes are created along the spars for
refining spanwise, while more nodes are added along the ribs for chordwise refining (Fig-
ure 2.1). As one can see, all newly created nodes still lie on a rib or spar, and thus they are
supported by the internal structure of the wing. For a combination of the two, grid refine-
ment introduces a “floating node.™ or a node that has no vertical support (Figure 2.2). Asa
result, the stiffness matrix becomes singular, and a special procedure must be used to elim-
inate this singularity. One way of overcoming this difficulty (Ref. 7) is by linking the dis-
placement at a floating node via multi-point constraints to the displacements of it’s
neighboring nodes. Since the equations of constraint depend on wing geometry, though,
analytic differentiation of stiffness and mass terms with respect to shape becomes quite
complicated.

Our solution is to add either “dummy” rib or “dummy” spar elements whose thickness
is substantially lower than the real ribs or spars (say, 1% thick) so as to not influence the
stiffness or mass of the wing but provide support for the floating nodes. The advantage
here is that all nodes and elements (whether real or dummy) are treated in the same way in
the course of analytic differentiation and no special treatment has to de devised for the
floating nodes. It must be remembered, however, that floating nodes can not have any ver-
tical loads applied to them. Thus when aerodynamic loads are distributed over the wing
they can only be applied to nodes supported by the actual internal structure of the wing.

Using CST webs for the spars and ribs creates another problem. Since only one row of
CST elements is used in the depth direction of the wing due to a wing’s small depth/chord
ratio, this leads to finite element models that are too stiff (Ref. 7). This comes as no sur-
prise since the constant stresses in a CST cannot capture the linear distribution of stresses
in a typical beam web. To correct for this the CST web membrane elements are modified

to only carry shear stresses by using just the shear stiffness portion of a CST’s stiffness
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matrix. They act as pure shear webs, and vertical rod spacers connecting the upper wing-
skin to the lower wingskin replace the normal stiffness of the web elements in the trans-

verse direction to keep upper and lower skins separated.

2.3 LST modeling

Using LST elements in place of the CST elements leads to better convergence of finite
element results because of the higher order of the LST. The problems with floating nodes,
however, are still present. The LST is a 6-noded element whose three additional nodes are
located along the midpoint of its sides. Because of these midside nodes, floating nodes
now appear not only in the wing skin planes, but also .in the rib and spar planes (Figure
2.3).Thus, in the spirit of our approach to CST modeling, a combination of two of the fol-
lowing techniques is necessary to provide support for these nodes and eliminate singular-
ity: dummy ribs, dummy spars, and/ovr dummy layers. The dummy layers are added to
support the mid-depth nodes of the spar and rib webs. They are similar to the other dummy
clcménts in that their thickness is very low (1% of the actual wing skin thicknesses).

Since the LST’s lead to better convergence of the finite element solution, the most
basic mesh possible (the one defined by the location of real spars and ribs in the wing) is
usually quite accurate. The stress output for a LST element consists of a pair of normal
stresses O, , O, and a shear stress O, at the comer nodes where each stress varies lin-
early across the element’s interior. |

Due to the higher order of the LST, shear stresses through the wing thickness are better

represented. Thus, no pure shear LST is necessary when using LST models.
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2.4 Wing lumped mass modeling

For natural frequency calculations. a lumped mass matrix modeling technique is used.
The mass of each finite element is distributed evenly to it’s nodes and then merged to the
global lumped mass matrix whose structure is strictly diagonal. Since floating nodes can
not support any load or force, inaccuracies in the calculation of higher natural frequencies
and mode shapes will arise. It will be seen in Chapter 7 that natural frequency accuracy is

a direct function of dummy element thickness and guidelines for the selection of this

thickness will be provided.

2.5 Finite element derivations

For complete details of the finite elements used and their respective stiffness, stress

and mass matrices, consult Appendix A.



CHAPTER 3
BEHAVIOR SENSITIVITIES

3.1 Introduction

Accurate and computationally efficient derivatives of behavior functions (such as dis-
placements, stresses or natural frequencies) with respect to design variables are important
in the context of gradient based optimization not only for calculation of the gradients
themselves but also as a basis for constructing constraint and objective function approxi-
mations (Refs. 1, 8 and 9). When structural shape optimization is involved, it is difficult to
obtain these sensitivities in a closed, explicit analytic form (without any numerical inte-
gration, as is usually used for evaluating mass and stiffness terms of general elements).
One popular way for obtaining structural behavior sensitivities is by finite differences
(Ref. 1). This technique, however, can be time consuming when the computational cost of
a single analysis is high. In addition, and cspccia]]); in the case of shape variations, finite
difference derivatives are sensitive to the step size used, and can lead to erroneous results
(Ref. 1).

In the present finite element modeling capability developed, simple finite elements
such as truss rod and plane stress CST’s and LST’s are used not only because of computa-
tional efficiency in formulating the stiffness and mass matrices, but also because of the
explicit algebraic nature of these matrices (Refs. 10, 11 and Appendix A). This makes it
possible to obtain behavior sensitivities in an analytic, explicit manner, thus avoiding
numerical problems associated with finite differences and significantly reducing comput-
ing time.

The wing structural design variables are divided into two categories: shape and sizing.

The wing planform is divided into trapezoids. The shape of each trapezoid is defined by
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six shape design variables. The variables y| , yr are the left and right spanwise coordinates
of the trapezoid, while xg , XA, XFR» XAR are the longitudinal locations of its four verti-
ces (Figure 3.1). The sizing variables include the cross-sectional area A; of any rod ele-
ment ‘i’ and the thickness t; of any CST or LST membrane element ‘j.” Based on the
formulations in Appendix A, analytic expressions for the sensitivity of element stiffness
and mass matrices can be derived with respect to the location of an element’s nodes. This
is done here in a manner similar to Ref. 12. The position of each element’s nodes can be
linked to the overall shape of an individual wing trapezoid knowing the rules used for gen-
erating the mesh for that trapezoid. Chain rule differentiation is then used for obtaining
stiffness and mass sensitivities of individual elements with respect to overall wing plan-

form shape design variables. Details of these derivations can be found in the appendices.
3.2 Sensitivities with respect to shape variables

3.2.1 Global displacements

The linear static structural equation serving as a basis for static analysts is

(k] {U} = {F} G-

The equation for displacement sensitivity with respect to any design variable in the

case where external loads do not change is (Ref. 1)

3{U) 11, 91K]
-5 ="K 55 W G2

where [K] is the stiffness matrix, { U} is the displacement vector and B is a typical
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design variable.

Once displacements and displacement sensitivities are known, it is possible to obtain
derivatives of stresses within elements. The stiffness matrix [K] is nonlinear in the shape
design variables. However, explicit expressions for stiffness terms in rod and plane stress

elements are available (see Appendix A) and can be used for differentiation.
3.2.2 Stress in the i’th rod element

As shown in Section A.l.2, the stress in a truss element depends on the shape design
'variables both explicitly (through a location vector {X}) and implicitly (through an elastic

deformation vector {Ug}). Therefore

do, do, d{X}, do, d{Ug},

9B T 3(Xy, 9B 9{Ugl, 9P (3-3)

where {X}; and {Ug}; are the location and displacement vectors in global coordinates

associated with a rod element, respectively.
3.2.3 Stress in the i’th CST element

Stress sensitivities for the CST with respect to planform shape design variables are

obtained by differentiation of the stress equations in Section A.2.2 giving
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o]
F i { ) AL, a8,
i o (= [, [R] A=+ 00,8, 5= Vet [, =[], 100, (3-4)

where {Ugl, is the vector containing CST element i’s nodal displacements in global coor-
dinates. The material matrix [D]; does not depend on the shape of the element, therefore

it’s derivative with respect to planform shape is zero.
3.2.4 Stress in the i’th LST element

The equations of Sections A.3.1 and A.3.2 are now differentiated analytically to obtain
sensitivities of stresses at the three vertices of an LST with respect to shape design vari-
ables. Chain rule differentiation is used to link variations in element node locations to the

global planform shape changes of the wing to give

3 G} NEImp [] wor <[ []',1 Va1, 35)

B il B -

= @
s
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The matrix [(”E] is a material constitutive matrix and does not depend on the shape of the

clement. {Ug} is the vector of element nodal displacements in global coordinates.
3.2.5 Natural frequencies
The governing equation of motion for an undamped structure in free vibration is
[K-@’M] {®} = {0} (3-6)

where A = @? isan eigenvector, {®} is it’s respective mode shape and ® is a circular nat-
ural frequency (radians/second). Implicit differentiation of A with respect to any shape

variable B yields

d[K] d [M]
87»‘. _ ¢.T[ op - A 9B ](pi 37)
9B o7 [M] 9,

for eigenvalue and mode shape ‘i’. Since the natural frequency (in Hertz) is given by

A :
M, (3-8)

i 2n
the natural frequency sensitivity after differentiation is

of; 1 a)‘i

op B 4nﬁi§5 G-
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3.3 Sensitivities with respect to sizing variables

In this case the stiffness and mass matrices depend linearly on the design variables. In
the case of truss elements and CST’s ar LST's, these design variables are cross sectional

area and membrane thickness, respectively.
3.3.1 Global Displacements

With x as a sizing type design variable, the matrix equations for sensitivities of the

displacement vector in global coordinates are (Ref. 1)

d : d[K
{U} —— = (K )—g—]{U} . (3-10)

Again, it is assumed that external loads do not change with changes in the sizing design

variables.
3.3.2 Stress in the i’th rod element

If the design variable is a rod cross sectional area A;:

J0, do, d{Ug},

0A; - d{Us}, 04

- (3-1D
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If the design variable is a membrane thickness g:

3o, 3o, {Ug},
3, IUG, oy (3-12)

where {Ug}; for both stress sensitivities is a 6x1 vector containing nodal displacements in

global coordinates for rod element i.

3.3.3 Stress in the i’th CST element

If the design variable is a rod area A;:

Q a

J

) x a{UG}‘.
ol o] = A a1

ol

p 44 i

If the design variable is a membrane thickness t;:

0 a{UG},'
57 ; (3-14)

o
X
ot { Gy } = [DJ,[B],[A], ot.
g Jj
xt i
where {Ug}; for both stress sensitivities is a 9x1 vector containing nodal displacements in

global coordinates for CST element ‘1.
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3.3.4 Stress in the i’th LST element

If the design variable is a rod area A;:

Sy d{Us;}.

°y} = [04A —z- G-13)
J

T

xy

(3-16)

- BE

o
P
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where {Ug}; for both stress sensitivities is a 18x1 vector containing nodal displacements

in global coordinates for LST element i.

3.3.5 Natural frequencies

With k again as a sizing type variable Ajort. the eigenvalue sensiavity is

d[X] d [M]
¢’;T[ - }4’.‘
A _ ox oK 3-17)
oK o7 (M) 0,
and the natural frequency sensitivity is
o 1
3 = 4Jt~/7_»iﬁ- (3-18)

Derivatives of nodal displacements with respect to shape type design variables are
obtained from Section 3.2.1 while derivatives of nodal displacements with respect to siz-
ing type design variables are obtained from Section 3.3.1. Sizing derivatives of the stiff-
ness and mass terms are straight forward because of the linear dependency (see Appendix
A). Thus, stress sensitivities with respect to sizing type design variables require sensitivi-
ties of deformations only. Additionally, all other matrix and vector transformations used to

move from local to global coordinates and from deformation (displacement) to stresses are

fixed in this case.



CHAPTER 4
AUTOMATIC MESH GENERATION

4.1 Introduction

The desire to circumvent the creation of finite element input files by hand and to auto-
mate model generation for wing shape synthesis makes it necessary to combine a mesh
generation capability with the finite element analysis and sensitivity techniques (Ref. 13).
At this stage of the present work this capability is limited to wings with ribs parallel to the
root rib, spars beginning at the root rib and terminating at the wing tip and a thickness dis-
tribution symmetric about the wing’s mid-plane (Figure 4.1). This modeling is sufficient
for the studies conducted in this work. The limitations are minor and can be removed by
making the mesh generator more general for other wing layouts and also for fuselage
structures. For the structural wing model the elements used include constant stress rods (to
model cap areas) and either CST membranes or LST membranes (to model wing skins and
webs). The mesh generator and finite clcmcnf capabilities are linked together so that when
combined with an optimization package, the shape of the wing (in addition to cap areas

and skin thicknesses) can be optimized.
4.2 Wing design variables and design rules

Figure 4.2 shows a sample mesh created by the mesh generator, and will be used to
define key parameters needed. The structure shown is a single wing trapezoid containing
five structural spars and six rbs including a root rib. In order to refine the mesh it is possi-
ble to add “dummy” ribs and spars between structural ribs and spars, as shown. The

parameters “adrib” and “adspar” define the number of added dummy ribs or dummy spars
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between adjacent structural ribs or spars. These dummy ribs and spars, whose stiffness is

negligibly low compared with the actual structure, are needed to support the added “float-
ing” nodes on cover skin surfaces modeled by triangular membrane elements. This is nec-
essary since there are only displacements and no rotations associated with each node, and
since the skin cover elements have no bending stiffness.

The x-y coordinates of the vertices of the wing trapezoid and spanwise and chordwise
locations of ribs and spars serve as shape design variables for the planform. All dummy
spars or ribs are assumed to be evenly spaced between real spars or ribs. Wing depth defi-
nition is also used based on associated shape design variables. Finally, all spar and rib cap
areas and all wing skin, spar web and rib web membrane thicknesses are used as sizing
type design variables. It should be mentioned again that at this stage of the present work
rib generation is limited to ribs that are parallel to the root rib. and spars have all to origi-

nate at the root chord and end on the tip chord of a trapezoidal section.

4.3 Planform expansion to three dimensions

With wing depth specified by the proper shape (depth) design variables, an explicit
equation for depth distribution as a function of x and y is established over the wingspan.
The planar mesh described in the previous section is now projected upward and down-
wards to generate the meshes for the upper and lower cover skins. Realistic thickness and
camber distributions can be modeled by proper selection of depth shape functions and

construction of a series in those functions whose coefficients serve as shape design vari-

ables.
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4.4 Shape variable coordinate linking matrix

With the 3-D grid complete, the linking of each node’s x-. y- and z- coordinates to the
six planform shape design variables of a wing trapezoidal section Xgp, Xa1.. XFR- XAR: YL
and yg (Fig. 3.1) and its depth design variables is straightforward, as detailed in Appendix
B. Derivatives of each nodal location with respect to each shape design variable can easily
be obtained. These derivatives, used in the finite element program for shape sensitivity
analysis, are the same as the coefficients that link each node to the shape variables since

the linking equations are linear.
4.5 Finite element placement

Individual finite elements are placed and connected to the proper nodes according to
the following rules: spar and rib caps (for the real structural spars and ribs only) are repre-
sented by rod elements connecting nodes on the upper skin or lower skin along the spar or
rib lines. Intersections of spar lines and rib lines (including dummy spars and ribs) define
quadrilateral cells on the upper and lower skins. Each of these cells is divided into two tri-
angular elements. For the webs of all ribs and spars, each quadrilateral cell (defined by the
end nodes of the upper and lower rod elements associated with the cell) is divided into two
triangular clemcnts.‘

As discussed earlier, mesh refinement involves the need for dummy ribs or dummy
spars if a floating node is present. For CST models, dummy ribs are sufﬁcicnt. For LST
models, dummy ribs and dummy layers are necessary to support both vertical and horizon-
tal floating degrees of freedom. The dummy layer (of negligibly thin material) connecting
the mid-side nodes of LST used in spar and rib webs is covered by triangular elements in a

manner similar to the cover skins.
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Following the rules described abuve, it is possible to generate explicit relations
between each element, its end nodes and the global shape design variables defining the
shape of the whole wing. These relations are then used for obtaining analytic sensitivities

of stiffness and mass sensitivities using chain rule differentiation (as described in the

appendices).



CHAPTER 5
FINITE ELEMENT IMPLEMENTATION ISSUES

5.1 Introduction

Implementation issues concerning the finite element modeling technique described in
Chapters 2-4 are discussed in this chapter. A standard displacement approach is followed
(Refs. 14, 15). The finite element code of Ref. 14 for three dimensional trusses serves as a
basis upon which the new capability is developed. Constant strain triangular elements
(CST’s) and linear strain triangular elements (LST’s) are added to the library of elements.
A banded matrix solution solver (Ref. 16) is used for static analysis. A QR eigenvalue
solution technique is used for the natural modes analysis. Analytic sensitivities of stiffness -

and mass matrices are generated and used to obtain sensitivities of displacements, stresses

and natural frequencies.
5.2 Global displacement solution
The governing equation for a static structural system is given by

(k] {Uu} = {F} (5-1)

where K is the banded global stiffness matrix, U is the vector of global displacements to

be solved for and F is the vector of nodal loads. The decomposition technique of Ref. 16 is

used for solution.
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5.3 Natural frequency solution

The governing equation for a dynamic structural system undergoing undamped free

vibration is given by
[K-w’M] {0} = {0} (5-2)

where K is the global stiffness matrix,  is a natural frequency in radians/second, M is the
lumped global mass matrix and ¢ is a mode shape. For a non-trivial solution of natural
frequencies and mode shapes to exist, the determinant of [K - w?M] must equal zero.

The method of solution will be to use a QR decomposition algorithm (Ref. 18) that solves

the standard eigenvalue problem
{A-A] {y} = {0} - (5-3)

where A is a square symmetric matrix, A is an eigenvalue, I is the identity matrix and v
is the corresponding eigenvector. The original equation is converted into the standard form
by using the fact that since M is diagonal and positive definite, it’s square root is easily

calculated. Thus, pre- and post-multiplying eqn. 5-2 by (Jlt_!)-l gives
[ k() - () M Ty} = {0) (5-4)
or

[A-AN {y} = {0} (5-5)



-1 -1
where A = (JM) K(JM)  issquare symmetric and A = w2,
Since y solves the standard eigenvalue problem (egn. 5-3), to find ¢ which solves the

original eigenvalue problem (egn. 5-2) it is necessary to use the formula

-1
0= (JM) vy . (5-6)
5.4 Element stress solution

All individual finite element stresses are calculated using the previously found global
displacements. Equations for axial stresses in rod elements are given in Appendix A.1.2.
Similarly, for CST elements, stress equations are given in Appendix A.2.2. For LST ele-

ments stress equations are given in Appendix A.3.2.
5.4.1 Stress smoothing

Since stresses throughout a CST c]cfncnt are constant, stress differences can be found
between neighboring CST’s and an averaging process (Ref. 17) is needed in order to
obtain a smooth stress distribution over the skin in areas where no discontinuities are
expected.

As an option in the present capability, a least squares fitting procedure is used to fit an
N order polynomial for each skin stress (Gyx, Oyy, Oyy) 0ver each wing skin trapezoid.

Thus if S(x,y) is any component of the plane stress in the skin, then

S(x,y) = ql+q2x+q3y+...+qkyN (5-7)
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or in matrix form:

Sy ={tlxy..}! i (5-8)
d3

where polynomial terms are picked based on Pascal’s triangle in Table 5.1. In the present
capability polynomial order can range from 2 to 5.

For least squares fitting, stresses in each CST are taken at the centroid of the element.
Thus. for each CST element ‘i’, ‘x;” and ‘y;’ refer to the element’s centroid position. Writ-
ing polynomial equations for the stress G in ‘k’ elements leads to ‘k’ equations of the form

[Ag]{q} = {bg} where

1 x; y y’,v
I x; 9y, ... y’zv
I xp ye oo y,’:'

and
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Table 5.1 - Choice of stress smoothing polynomial

Xy
x2. xy ¥
3 2y xy? 3
& 3y 22y ¥
5 4 3.2 2.3 4 5



g,
G

{bst = { o5 (5-10)
Ok

To solve for {q}, the normal equations approach is used (Ref. 18) to yield

[451T[A] {q} = [A5) T {bs) (5-11)

or
[Anew] {q} = {bnew} ) (5-12)

which can be directly solved using Ref. 16.
5.4.2 Stress smoothing sensitivities

Differentiating the previous equations for smoothed stresses with respect to a shape

design variable B leads to

38 (xy) _ . 19{a} = T
T - {l,x,y,...} '_aTZ__-l'{Oa w, B_Bv} {q} (5'13)

where the vector { (dg) / (df) } is obtained from
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d{q} _ a{bne’w} a[Anew]

[A

new) 35 T OB T OB {al
Now
a4, 1 dlAgT TO[Ag]
3B - Ad+A) =5
and
dlb,,,] olAgT 79 [bg]
B~ P by + 44 B
where
| axl ayl ayllv_l-
Oww...NT
AAgl [0 o o
I
ayﬁl—-l
0 o N—SB—-

and

(5-14)

(5-15)

(5-16)

(5-17)
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' aol
B
a{bS} < > (5-18)
9B
aok
| OB |

For shape sensitivities, the expressions above take care of the motion of the (x;,y;) points
used for least squares fitting as well as the motion of the point where the stress is calcu-
lated. For sizing sensitivities, all points used for least squares fitting and stress output cal-
culations are fixed and their derivatives are zero. Therefore, all derivatives of [Ag] with

respect to any size variable x are zero, resulting in

a{q} _ a{bnew}

[Anen) 5= = —3— (5-19)
where
3b) [ qTOLb]
—— = [ = (520
and
7 acl -
oK
d{b
—{B?S}— -1 (5-21)
o
L dK




CHAPTER 6
WING MODEL TEST CASES

6.1 Introduction

Three wing models are described here for later use as test cases. For each. a brief phys-

ical description is given along with all load cases to be examined.
6.2 Gallagher wing

The Gallagher model 1 wing (Ref. 19) is an unswept, untapered canti]cvcf wing as
shown in Figure 6.1. The aspect ratio is 4 and the depth-to-chord ratio is 0.075. All inter-
nal members, being formed channels, are modeled as shear webs using membrane ele-
ments. The channel flanges are modeled as rod elements whose cross-sectional area
matches that of the flange area. Additionally, the skins are modeled with membrane ele-

ments only. The material used is 6061-T6 aluminum and its properties are:

E=10.0x 10 ® psi v=03  p=0.000259 Ibm/in3

The load case analyzed is a 100 1bf. point load at each rib / spar intersection, first applied
one at a time to derive the wings influence coefficients and then applied simultaneously
(representing a continuous load over the wing) to examine its deformed shape. All wing
skin thicknesses are 0.063” , web thicknesses are 0.040” and cap areas are modelled as
being 0.02 square inches. Numerical tests include evaluation of the difference between
modeling the spar/ rib webs as plane stress elements carrying normal and shear stresses

and spar / rib webs modeled by shear webs only. The effect of mesh refinement is exam-
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ined. The results from finite element models based on CST membranes are compared to

those with LST membranes.

6.3 Denke wing

The Denke wing (Ret. 20) is a 45 degree swept back wing with an aspect ratio of 10, a
depth-to-chord ratio of 0.35 and can be seen in Figure 6.2. Only four internal ribs are
present along with the front and rear spars. Two load cases are considered. Load case |
involves a 1 1bf. point load applied vertically at the tip trailing edge, while load case 2
involves a 1 Ibf. point load applied vertically at the leading edge at 60% span. The mate-

rial properties used are:
E=10.0 x 10 © psi v=03 p = 0.000259 Ibm/in’

All wing skin thicknesses are 0.032”, web thicknesses are 0.051” and stringer areas are
0.371 square inches for the leading and trailing edge elements, and 0.061 square inches for
all remaining stringers. |

Again, effects of using plane stress and pure shear elements for spar and rib webs are
studied as well as comparisons between the performance of CST’s and LST’s. This wing is
an example of a thick, high aspect ratio wing typical in transonic transport airplane con-
struction. Displacements and experimentally measured stresses in spar cabs are used to

assess accuracy of the present capability.
6.4 Turner/Martin/Weikel wing

The Turner wing (Ref. 21), originally studied by Eggwertz and Noton, can be seen
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in Figure 6.3. It has a 30 degree sweep, aspect ratio of 5 and a depth-to-chord ratio of 0.21.
Five spars and three ribs are assumed to be perfectly attached to the upper and lower wing-
skins and to each other. Cover skins are modeled as plunc-su*cs.\' elements and a compari-
son is made between modeling the spar and rib webs as plane stress or pure shear

elements. The material used is aluminum with the following properties:

E=10.0 x 10 ® psi v=03  p=0.000259 Ibm/in>

All wing skin thicknesses are 0.118”, web thicknesses are 0.059" and cap areas are
0.0619 square inches.

Measured displacements and skin stresses in the root area are used for evaluation. It
should be mentioned (Ref. 21) that while measured skin stresses cyy along the span (in
the direction of the spars) are quite accurate, there is a reason to believe that normal
stresses perpendicular to the spars S and skin shear stresses ny are inaccurate. Since
they are very small compared to ny, there would be no significant effect on failure esti-
mation for the wing.

For the Turner wing, in addition to the experimental data, finite element results, in par-
ticular wing skin stresses and model natural frequencies, from a commercially available

code (ELFINI, Ref. 22), were generated and used to compare to results from the present

capability.
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CHAPTER 7
NUMERICAL RESULTS

7.1 Introduction

Three wing models are used to assess the present capability. First, accuracy of the
finite element results needs to be evaluated, since the present capability is based on very
basic, low order elements (in an effort to gain computational speed and obtain analytic
sensitivities). This is done by comparing results obtained by the present capability to

results by commercially available codes and to experimental results wherever possible.

7.2 Gallagher wing

Figure 7.1 shows both the ori_ginal wing skin mesh (based on existing ribs and spars)
and a refined wing skin mesh employing four dummy ribs between each primary rib.
When CST’s are used for cover skins and rib / spar webs, the effect of increasing the num-
ber of spanwise divisions on the tip displacement using shear webs versus regular CST’s
in the vertical webs is shown in Figure 7.2. Natural frequency convergence under mesh
refinement is seen in Figure 7.3. As the number of divisions increase, the finite element
displacement solution approaches that found experimentally (Ref. 19). It is interesting to
note that the effect of modeling the spar and rib webs with shear webs becomes more
important as the mesh is refined. The refined finite element model with shear webs is about
5% stiffer than the experimental model.

A comparison of a refined CST model prediction (adrib = 5) and the LST model is
shown in Figure 7.4. The LST model.uses a mesh based on the existing ribs and spars as in

the coarser CST model. Mid-chord deflections along the entire span for both models are
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compared to experimental data. Both models are in close agreement with only a 5.07%
and a 2.05% wingtip deflection deviation from experiment, respectively (Table 7.1).

Gallagher’s experimental influence coefficient matrix (Ref. 19) is reproduced in Table
7.2 along with the resulting approximate influence matrix for the refined CST model
(adrib=5) and the LST model. It can be seen that displacement results are good for the
LST model while the CST model is slightly stiffer.

No experimental data is available for stresses on the Gallagher wing. As expected
stresses in skin CST’s fluctuate and change discontinuously from element to element. Per-
_ formance of the stress smoothing technique (Chapter 5) was evaluated by using polynomi-
als of order two through five along with the adrib=4 mesh. The resulting polynomial fits
are presented in Table 7.3, and plots along cuts A and B (Figure 7.1) are shown for each
stress in Figures 7.5 through 7.10. It is found that a polynomial of order N=4 captures CST

stress variations well over the wing in this case.

7.3 Denke wing

Figure 7.11 shows both the original wing skin mesh (based on existing spars and ribs)
and a refined wing skin mesh employing two dummy ribs between each pair of primary
ribs. Deflection results for the Denke wing (in the case of CST elements) with an increas-
ing number of spanwise divisions are compared in Figures 7.12 and 7.13. Results of using
shear webs and CST membranes (including normal stresses) for spar and rib webs are
shown for both load cases. Natural frequency convergence results are shown in Figure

7.14.

Excellent correlation between experiment and finite element modeling using CST's is
shown in Figures 7.15 and 7.16 for load cases | and 2, respectively. The CST model used

for these and all subsequent results has adrib=2. Comparison of results from the LST
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Table 7.1 - Displacements of the Gallagher model | wing

Mid-chord deflection (in.)

Node experiment | CST model % error |LST model % error
3.0 1.319 1.252 5.07 1.346 2.05
8.0 0.765 0.691 9.65 0.740 3.24
13.0 - 0.258 0.221 14.17 0.233 9.51
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Table 7.2 - Gallagher model | influence coefficients

Poiots ou Model |

\ 2 ) ‘ ’ ‘ 1 s ) 10 1) 12 13 14 13
T o074 01631 0151 014I5 0129 | 00987 00902 00827 0075 0066 [ 00312 005 00252 0026 00173
1 01631 01554 01494 0.1428 | 00914 0083 00846 00802 00747 { 0028 00279 00257 008 0022
1 0.15712 0.1565 0.1546 | 00832 00836 00854 00844 0082 0.0244 00257 00254 00255 0.0242
4 0.1643 0.1664 | 00772 00804 00834  0.0895 00914 | 00216 0.0248 00264 00276 00184
3 01804 | 00706 00766 00847 0093 01014 | 00184 00234 00262 00297 00318
. 0.0687 0.0591 0.0502 0.0:844 0.0379 0.025 0.0216 00173 00136 00106
7 00573 00512 0.0453 0.0426 | 00208 00178 0.0173 00151 oots
M 0.054 0.0513 00492 | 00168 00174 0018 00172 0.0163
0 0.058 00583 | 00139 00158 00178 0019 00209
10 00714 | 00105 00142 0017 00205 0.025
0 00174 00124 00071 0.0048  0.0028
" 00137 0.0082 0.0064 0.0052
" 00105  0.0081 0.0073
" 0.0125  0.0118
1s . 0.0169
Experimental
Points oo Mode! 1
1 2 3 4 S 6 7 [ ] L] 10 1t 12 13 14 13
1] 01745 01612 0.438 01376 0.1272 | 0.0923 00854 00782 00708 0063} | 0.0279 00258 00231 00198 00158
2 0.157 0.1503  0.1438 0.1377 | 00845 00819 0078 0.0745 0.07 0.0248 0.0243 00231 0.0214 0.0I88
3 0.1516  0.1504 0.149 0.0771 00782 00787 00783 00773 | 00217 0.0228 0.0232 0.0229 0.0219
4 04572 0.1614 | 00699 00745 00786  0.0821 0.0848 | 00187 00213 0.023t 0.0244 0.025
s 0.1748 | 00629 00708 00782 008SS  0.0925 | 001 $6 00198 0.0231  0.02% o0.0281
. 00597 00516 00448 00383 00324 ; 00205 00176 00145 00115 0.0082
L) 0.0495 00455 0.0418 00384 | 00172 00162 00148 00131 0011}
s 0.0465 0.045S 0.0447 ; 00139 00145 00149 00147 0014
. 0.0496  0.0519 0.011 0.013 00148 00163 0017
10 00599 | 00081 0011S 00145 0.0176  0.0206
" 0.0125 0008 00058 0.0037 0.0019
1 0.0084  0.0064 0.005 0.0038
1 0.0072 0.0064  0.0058
14 0.0084  0.0085
1S 0.0125
CST model
_ Points on Model 1 .
' ) 3 4 ] ) ? ) ) 10 1] 12 13 14 15
7T o180 017 01601 01489 O30 | 0082 00913 0084 00764 008D [ 00293 0mM 0047 0013 00168
32 0.160 01621 0.15S3  O.1438 | 00903 00879 00345 0082 00753 | 00262 0.0259 0.0247 00229 0.019%
3 0.1637 0.162 0.16 00877 00842 00848 00841 00826 | 00231 00244 00248 0024 000
] 0169 0176 | 00753 00806 00845 00879 00903 | 00199 0.0229 0.0347 00258 0.0262
s 0.1863 | 00683 0.0764  0.084 0.0913 00982 | 00169 0.0213 0.0247 0.0274_ 0.0293
. 0.0631 00548 0.0475 0.0411 0.035 00215 00188 00153 00123 0.0098
1 00528 0.0486 00448 00411 0018 00172 0015 001 0.0116
s 0.0497 00486 00475 | 00147 00155 0.0158 0.0155 0.0146
’ 00528 00848 | 00126 0013 00156 00172 0018
10 00531 | 00088 00123 00153 00188 0.0218
1 00128 00086 0.0058 00038 0.002
a 00085 0.0065 0.0051 0.0038
1 00074 00065 0.0058
1 0.0085  0.0086
15 0.0125

LST model
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Table 7.3 - Gallagher model 1 stress smoothing polynomials

S = 4144 + 163.1x - 434.5y - 11.72x% + 0.85xy + 9.85y2

S = 4600 + 523.8x - 870y - 38.9x2 - 17.7xy +49.1y% + 0.145x3 + 1.51x%y -
0.137xy? - 0.85y>

S = 6279 - 116.6x - 1564y + 130.8x% - 20.62xy + 153.8y% - 15.35x3 +
0.382x2y + 0.195xy? - 6255y + 0.447x* + 0.139x%y - 0.067x%y* +
0.0149xy3 + 0.088y*

S = 8613 - 968.9x - 2890y + 229.6x2 + 168.9xy + 406.5y -5.66x° -
34.15x2y - 6.05xy? - 27.6y> - 1.52x* + 2.56xy + 0.6x%y% + 0.116xy> +
0.87y% + 0.075x5 - 0.06x% - 0.025x3y? - 0.0024x%y> - 0.001xy* -

0.01 y5

S = 25500 + 54.36x - 1478y - 2.72x% - 0.43xy + 21.2y>

S = 24890 + 396.3x - 1467y - 44.6x% - 10.4xy +22.5y% + 1.45x3 + 0.61x%y +
0.028xy?2 - 0.034y3

S = 24460 + 323.4x - 1245y + 18.06x2 - 51.6xy + 2.16y* - 6.38x> +
0.33x2y + 1.53xy? + 0.789y3 + 0.271x* -0.02x%y - 0.076x%y? -
0.008xy" - 0.013y*

S = 24160 + 998.5x - 1334y - 389.7x2 + 37xy + 4.16y* + 81.75x3 -
20.4x2y + 1.92xy? + 0.387y3 - 7.39x* + 2.13x%y + 0.065x%y? -
0.072xy> + 0.012y% + 0.23x5 - 0.066x% - 0.0062x%y? - 0.0x%y’+
0.0011xy* - 0.00044y°

S = -1149 + 144.2x + 86.33y - 0.0584x2 - 10.45xy - 0.19y>

S = -2435 + 36.5x + 446y + 54.9x2 - 56.4xy - 13y? - 2.4x° + 0x%y +
1.53xy? - 0.03y3

S = -3819 + 78.6x + 1085y + 94.8x2 - 134.2xy - 69.7y% - 6.3x> - 0.186x%y +
8.13xy2 + 1.5y3 + 0.128x* + 0.0026x3y + 0.0043x%y2 - 0.148xy> -

0.006y*
S = -6531 + 1865x + 2029y - 473.4x2 - 309.5xy - 207y2 + 84.1x> + 9.8x%y +

26.1xy2 + 9.27y3 - 6.66x% - 0.0013x3y - 0.577x%y2 - 0.9xy> - 0.18y* +
0.19%5 + 0.028x%y + 0.028x%y2 - 0.0012x%y> + 0.013xy* + 0.001y°
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model (basic mesh) with experimental results are shown in Figures 7.17 and 7.18. The
correlation is good. It is slightly stiffer than the best case CST model results along the
leading edge in load case 2 (Figure 7.16). Numerical results are listed in Table 7.4 and are
seen to be reasonably close to experiment.

Stress behavior is first analyzed in the spar caps along the wing root. Figure 7.19
shows the comparison for each model with respect to published values (Ref. 20). As can
be seen, finite element stress magnitudes are lower than experiment towards the root trail-
ing edge, and a rather large discrepancy exists in the CST model at 80% of the chord. One
reason for this is that the Ref. 20 results were taken at the wing root while the finite ele-
ment results were taken from the mid-point of the root rod element (the axial stress is
assumed constant throughout its length). In addition, the well known root trailing edge
stress singularity in swept back wings appears, and accuracy of all calculated results dete-
riorates in that region.

A comparison of cap stresses along the leading and trailing edge spar caps for each
model (CST and LST) for load case 2 is seen in Figures 7.20 and 7.21. Good correlation
with experiment exists. The stress values plotted for each spar cap element were taken at
its geometric midpoint as mentioned previously.

No experimental wing skin stress data is available for the Denke wing. Skin stress
curve fits were again attempted for each stress along both a chordwise and a spanwise cut
(Fig. 7.11) in the CST model. Numerical details of the various curve fitting polynomials
are given in Table 7.5. Figures 7.22 through 7.27 show the resulting plots. As with the
Gallagher wing, a polynomial of order N=4 gives the best representation for the fluctuat-

ing CST element stresses with Oy showing the best behavior.
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Table 7.4 - Displacements of the Denke wing

Load case | Deflection (x10-3 in.)
Node experiment | CST model % error | LST model % error
1 0.007 0.007 0.00 0.007 0.00
2 0.033 0.035 6.06 0.035 6.06
3 0.040 0.040 0.00 0.039 2.50
4 0.096 0.102 6.25 0.099 3.13
S 0.100 0.097 3.00 0.094 6.00
6 0.185 0.189 2.16 0.183 1.08
7 0.170 0.174 2.35 0.168 1.18
8 0.290 0.291 0.34 0.281 3.10
9 0.260 0.263 1.15 0.255 1.92
10 0.400 0.403 0.75 0.389 2.75
Load case 2 Deflection (x10-3 in.)
Node experiment | CSTmodel % error |LSTmodel % error
1 0.014 0.013 7.14 0.012 14.29
0.011 0.013 18.18 0.012 9.09
3 0.038 0.037 2.63 0.036 5.26
4 0.032 0.033 .13 0.033 3.13
5 0.070 0.067 4.29 0.066 5.71
6 0.056 0.056 0.00 0.054 3.57
7 0.089 0.087 2.25 0.084 5.62
8 0.076 0.076 0.00 0.074 2.63
9 | o108 0.107 093 | o104 370
10 0.096 0.097 1.04 0.094 2.08
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Table 7.5 - Denke stress smoothing polynomials

S = -0.5732 + 0.133x - 0.2246y - 0.0005606x> - 0.0009817xy + 0.004109y?

S =0.9131 - 0.05502x - 0.2869y + 0.007494x2 - 0.00063xy + 0.005896y” -
0.0001728x3 + 0.000346x2y - 0.0004927xy? + 0.0002019y°

S =1.616-0.2591x - 0.2163y + 0.02552x% - 0.00929xy + 0.002164y? -
0.0009427x3 + 0.001616x2y - 0.0018xy? + 0.000973y> +0.0000117x* -
0.00002935x3y + 0.0000317x2y2 - 0.000009087xy> - 0.000005911y*

S =2.127 - 0.98x + 0.5835y + 0.251x2 - 0.467xy + 0.228y% - 0.028x> +
0.07816x2y - 0.07174xy? + 0.0213y? + 0.0014x* - 0.005123x%y +
0.00692x2y2 - 0.004126xy> + 0.000937y* - 0.0000258x> + 0.000115x"y -
0.0002024x%y2 + 0.000175x2y> - 0.000074xy* + 0.00001185y°

S = 4.56 - 0.0895x - 0.08107y - 0.0004309x2 + 0.001836xy + 0.0001947y?

S =2.713 + 0.1171x + 00265y - 0.008532x - 0.003825xy + 0.002099y” +
0.0003573x3 - 0.001119x2y + 0.0017xy? - 0.0008231y>

S = 1.683 + 0.1255x + 0.3875y + 0.00897x2 - 0.06642xy + 0.02704y” -
0.00097x3 + 0.002349x2y + 0.0007279xy? - 0.001396y" + 0.00004581x* -
0.000194x%y + 0.0003256x2y? - 0.0002886xy> + 0.0001078y*

S =2.161 - 0.098x + 0.539y - 0.0287x2 + 0.077xy - 0.0864y> + 0.01676x" -
0.06263x2y + 0.07636xy? - 002968y - 0.001712x* + 0.00766xy -
0.01253x2y2 + 0.008884xy - 0.002301y* + 0.0000539x> - 0.0002943xy +
0.0006389x3y2 - 0.0006924x2y>+ 0.0003766xy* - 0.00008273y>

S =-1.191 + 0.00433x + 0.05274y - 0.0002078x2 + 0.000339xy - 0.000801y>

S = -1.368 + 0.1041x - 0.07157y - 0.004549x2 + 0.002929xy + 0.00359y? -
0.0000683x3 + 0.0004915x%y - 0.0007492xy? + 0.0002806y°

S =-1.556 +0.1912x - 0.1758y - 0.002212x2 - 0.02199xy + 0.03325y2 -
0.0006887x3 + 0.003224x2y - 0.003743xy? + 0.0008293y> + 0.00001036x* -
0.00002879x%y - 0.000003943x%y2 + 0.00005072xy> - 0.00002422y*

S = -1.63 + 0.086x + 0.03225y + 0.0284x2 - 0.08423xy + 0.05124y? -
0.0043x3 + 0.0126x%y - 0.01077xy? + 0.002693y° + 0.0002488x" -
0.00095x3y + 0.00137x2y? - 0.0009256xy> + 0.00025y* - 0.0000067x° +
0.0000356x% - 0.000078x3y2 + 0.00009x%y> - 0.00005xy* + 0.000011y°
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Figure 7.22 - Oy, stress smoothing along line A - Denke wing (load case 2)
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7.4 Turner/Martin/Weikel wing

Figure 7.28 shows both the basic wing skin mesh and the refined wing skin mesh for
the Turner wing using CST elements. In this case the mesh includes both spanwise and
chordwise refinements, introducing the presence of floating nodes. Chordwise mesh
refinement consists of one dummy spar per spar interval, and 1s employed to allow for
more CST elements across the chord. One dummy rib per rib interval is then added within
the root region. Figure 7.29 shows the LST element model used for comparison.

The effect on wing deflection of modeling the Tumer wing with a refined mesh and
pure CST shear webs as compared to the LST model is seen in Figures 7.30 and 7.31.
Mesh refinement has only a small effect on the spanwise vertical deflection. Tables 7.6 and
7.7, though, show that refining the mesh in this case leads to greater in-plane deflections
(x- and y- axes) for the CST model.

With rcspeci to stresses, nodal stress averaging following the results of Turner (Ref.
21) was performed for each CST wing model. Tables 7.8 and 7.9 contain the nodal aver-
ages for each of the three stresses within the wing root area as compared to published
results. Close agreement is found for G,y and Oyy. In the case of the shear stress Oy, the
correlation is not as good.

Nawral frequency results for both finite element models as compared with those avail-
able from a commercial finite element package (ELFINI, Ref. 22) can be seen in Table
7.10. Excellent agreement using the original mesh is evident. Natural frequency results
using the refined mesh decrease in accuracy as the frequency increases due to localized
vibration of lumped masses at floating nodes. An attempt to solve this problem involved
studying the choice of dummy element thicknesses (1% of a real element’s thickness was
the choice in all studies up to this point). The effect of varying the dummy element thick-

ness from 1% to 10% on displacements and natural frequencies is shown in Table 7.11.
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Figure 7.28 - Tumer wing skin CST meshes
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Table 7.6 - Displacements of the Turner wing (original mesh)

Tumer (x10-6) l CST model (x10-6)

Node u v w u Y w
31 0.008 -4.491 -15.910 0.009 -4.874 -17.444
32 -0.443 -4.333 -16.690 -0.422 -4.747 -18.447
33 -0.850 -4.251 -16.939 -0.820 -4.650 -18.818
34 -1.225 -4.142 -16.069 -1.180 -4.530 -18.053
35 -1.585 -4,060 -13.669 -1.532 -4.473 -15.740
36 -0.030 -2.666 -5.695 0.009 -2.878 -6.302
37 -0.660 -2.840 -1.797 -0.616 -3.104 -8.534
38 -1.014 -3.043 -8.947 -0.983 -3.329 -9.882
39 -1.327 -3.069 -8.933 -1.299 -3.368 -10.022
40 -1.682 -2.991 -7.463 -1.662 3311 -8.586
41 0 0 0 0 0 0
42 -0.480 -1.252 -2.004 -0.393 -1.315 -2.103
43 -0.858 -1.801 -3.421 -0.798 -1.960 -3.669
44 - -1.184 -2.029 -3.923 -1.141 -2.231 -4319
45 -1.511 2098  -3.232 -1.478 -2.328 -3.660

" 46 0 0 0 0 0 0
47 -0.513 -0.940 -1.091 -0.440 -0.981 -1.154
48 -0.904 -1.341 -1.689 -0.850 -1.455 -1.831
49 -1.226 -1.548 -1.333 -1.191 -1.688 -1.486
S0 0 0 0 0 0 0
51 -0.483 -0.679 -0.384 -0.429 -0.708 -0.398
52 -0.836 -1.016 -0.178 -0.788 -1.076 -0.175
53 0 0 ] 0 0 0
54 -0.383 -0.506 0.260 -0.338 -0.504 0.299
55 0 0 0 0 0o 0
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Table 7.7 - Displacements of the Tumer wing (refined mesh)

Tumer (x10-6)

CST model (x10-6)

Node u v w u v w
31 0.008 -4.491 -15.910 0.103 -5.074 -18.053
32 -0.443 -4.333 -16.690 -0.425 -4.857 -19.000
33 -0.850 -4.251 -16.939 -0.828 -4.744 -19.312
34 -1.225 -4.142 -16.069 -1.198 -4.616 -18.458
35 -1.585 -4.060 -13.669 -1.562 -4.562 -16.005
36 -0.030 -2.666 -5.695 0.048 -3.066 -6.520
37 -0.660 -2.840 -1.797 -0.629 -3.227 -9.634
38 -1.014 -3.043 -8.947 -0.993 . -3410 -10.190
39 -1.327 -3.069 -8.933 -1.304 -3.429 -10.259
40 -1.682 -2.991 -7.463 -1.658 -3.363 -8.665
4] 0 0 0 0 0 0
42 -0.480 -1.252 -2.004 -0.444 -1.426 -2.133
43 -0.858 -1.801 -342] -0.821 -2.054 -3.772
44 -1.184 -2.029 -3.923 -1.144 -2.300 -4.400
45 -1.511 -2.098 -3.232 -1.476 -2.379 -3.588
46 0 0 0 0 o 0
47 -0.513 -0.940 -1.091 -0.485 -1.039 -1.196
48 -0.904 -1.341 -1.689 -0.874 -1.502 -1.877
49 -1.226 -1.548 -1.333 -1.208 -1.713 -1.398
50 0 -0 0 0 0 0
51 -0.483 -0.679 -0.384 -0.467 -0.733 -0.406
52 -0.836 -1.016 -0.178 -0.822 -1.089 -0.089
53 0 0 0 0 0 0
54 -0.383 -0.506 0.260 -0.377 -0.503 0.349
55 0 0 0 0 0 0
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Table 7.8 - Summary of Turner computed nodal stress averages (original mesh)

Tumer stress averages (psi) CST stress averages (psi)
Node SigmaX SigmaY SigmaXY| SigmaX SigmaY SigmaXY
36 0.36 8.93 0.45 0.49 8.85 -0.28
37 0.61 6.68 -0.38 0.61 7.57 -0.51
38 0.60 5.41 -0.17 0.51 5.73 -0.19
39 0.34 4.60 0.04 0.30 4.85 -0.01
40 0.20 4.28 0.12 0.13 4.42 0.12
4] 0.98 9.55 -0.87 1.05 9.11 -0.88
42 0.91 7.43 -0.41 0.90 7.42 -0.58
43 0.59 5.56 0.00 0.51 5.94 -0.07
44 0.29 442 0.25 0.21 471 0.23
45 0.15 3.80 0.38 0.09 4.11 0.34
46 0.52 7.13 -0.15 0.66 6.92 -0.39
47 0.29 5.60 0.17 0.29 5.64 -0.03
48 0.15 427 0.41 0.10 4.59 0.33
49 0.08 3.55 0.52 0.00 3.91 0.47
S0 -0.07 5.18 0.24 0.06 - 5.03 0.04
51 -0.08 4.10 0.44 -0.09 411 0.28
52 -0.05 343 0.53 -0.09 3.67 0.43
53 -0.26 3.71 0.37 -0.16 3.61 0.25
54 -0.22 3.25 0.41 . -0.24 3.02 0.19
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Table 7.9 - Summary of Turner computed nodal stress averages (refined mesh)

Tumer stress averages (psi) CST stress averages (psi)
Node SigmaX SigmaY SigmaXY SigmaX SigmaY SigmaXY
36 0.36 8.93 0.45 0.25 9.34 -0.29
37 0.61 6.68 -0.38 0.67 7.22 -0.45
38 0.60 5.41 -0.17 0.55 5.61 -0.29
39 0.34 4.60 0.04 0.32 4.77 -0.15
40 0.20 428 0.12 0.07 437 -0.06
41 098 9.55 -0.87 1.08 10.22 -0.95
42 0.91 7.43 -0.41 0.91 7.89 -0.04
43 0.59 5.56 0.60 0.62 5.89 -0.03
44 0.29 442 0.25 0.32 4.64 0.29
45 0.15 3.80 0.38 0.10 4.07 031
46 0.52 7.13 -0.15 0.66 7.78 -0.28
47 0.29 5.60 0.17 0.34 6.08 0.09
48 0.15 427 0.41 0.20 4.67 0.35
49 0.08 3.55 0.52 0.04 3.88 0.56
50 -0.07 5.18 0.24 0.02 5.58 0.11
51 -0.08 4.10 0.44 -0.06 - 442 0.33
52 -0.05 343 0.53 -0.03 3.65 0.40
53 -0.26 371 - 037 0.28 3.87 0.31
54 -0.22 3.25 0.41 -0.13 333 0.23




84

Table 7.10 - Natural frequencies of the Tumer wing

Natural Frequency (Hz)
Original Refined
Mode CST model CST model ELFINI
1 120 119 116
2 337 _ 327 318
3 419 411 418
4 602 540 577
5 1107 687 1086
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Table 7.11 - Dummy thickness effect on Tumner displacements and
natural frequencies

Natural Frequencies (Hz)

Original Refined CST models
Mode CST model (1%) (5%) (10%) ELFINI

| 120 119 119 119 116

2 337 327 327 326 318

3 419 411 426 429 418

4 602 540 593 599 577

5 1107 687 1074 1130 1076
Load point

displacement 0.216 0.219 0.218 0.217 N/A
(103 in.)
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Increased thicknesses result in increased natural frequency accuracy with an insignificant
decrease in tip displacement. The study’s effect on element stresses can be seen in Figures
7.32 and 7.33. Figure 7.32 details the change in leading and trailing edge cap stresses for
an increase in dummy membrane thickness while Figure 7.33 shows the change in CST
element stresses Oy, and Oy along line B;. Again, increased dummy element thicknesses
have a minimal effect on both cap and membrane stresses. Subsequently. a good rule of
thumb is to use dummy elements with a thickness of between 5% and 10% of what the
actual structure requires only if accurate natural frequency / mode shape information is
desired.

Stress smoothing was again employed for each CST wing model, with finite element
stress results available from ELFINI. For each stress. a polynomial was found at each cut
A and B/B, (Figures 7.28 and 7.29) for both the basic CST model and the LST model
while being compared to ELFINT results and the CST model’s smoothed stresses. Numer-
ical details of the various curve fitting polynomials for each wing mesh are in Tables 7.12
and 7.13, but with a polynomial order of N=4 having been previously established, this
degree will be used for all subsequent stress comparisons. Plots are shown in Figures 7.34
through 7.39. Note the linear, piecewise continuous nature of the LST model’s stresses
along each cut. Additionally, the ELFINI stress results can be seen in Figures 7.40 through
7.42 for each stress.

Good agreement with ELFINI for all models can easily be seen for Gy, along with
excellent curve fits at each cut. Along cut A, reasonable accuracy in both the element
stresses and the N=4 stress polynomial is obtained for G, while poor accuracy between
ELFINI and stress smoothing results exist for Oyy. It is also worth noting the decrease in
accuracy as one nears the trailing edge root location (100% chord). Along spanwise cuts
B/B,, the N=4 curve fit and element stresses are better for Gy but this ime Gy, ELFINI

results and stress results are quite different. In general, good agreement exists between the
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Figure 7.33 - Dummy thickness effect on Turner membrane stresses along line B,
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Table 7.12 - Tumer stress smoothing polynomials (original CST mesh)

S = 0.04528 + 0.04588x - 0.003832y - 0.0019x2 - 0.003465xy + 0.0009846y”

S = 0.6845 - 0.03744x - 0.1511y + 0.00983x2 + 0.004395xy + 0.008456y -
0.001147x3 + 0.0006225x%y - 0.0004522xy? - 0.00008472y>

S = 0.908 - 0.4852x - 0.07524y + 0.1462x2 + 0.01168xy - 0.000891y? -
0.01702x3- 0.001019x2y - 0.0001546xy? + 0.0002379y" + 0.0006553x* +
0.0x3y + 0.00005336x2y? - 0.0000195xy> - 0.000002632y*

S=1.534 - 1.709x - 0.08587y + 0.9185x2 - 0.1164xy + 0.02993y? - 0.1907x> +
0.01492x2y + 0.007555xy? - 0.002937y> + 0.01719x* - 0.000755xy -
0.000653x2y2 - 0.0001503xy> +0.000107y* - 0.0005716x +0.000033x"y -
0.000004953x3y2 + 0.00001668x2y> - 0.000001182xy* - 0.000001176y°

S =-1.1 +0.0166x + 0.4174y + 0.01546x2 - 0.0238xy - 0.002058y?

S = 0.6766 - 0.1821x - 0.02451y + 0.06061x2 - 0.007962xy + 0.02102y” -
0.004979x3 + 0.002886x2y - 0.001505xy? - 0.0002467y

S = 0.9147 - 0.979x + 0.2071y + 0.3286x% + 0.01566xy - 0.01273y? -
0.044x3 + 0.004483x2y - 0.002706xy? + 0.001263y> + 0.001983x* -
0.0005238x3y + 0.0002468x2y? - 0.00003682xy> - 0.0000182y* .

S = 1.854 - 3.575x + 0.5373y + 1.824x2 - 0.1196xy - 0.03281y? - 0.388x> +
0.02312x2y + 0.00878xy? + 0.0005012y + 0.03721x* - 0.004233x%y +
0.000665x2y2 - 0.0005914xy> + 0.00006662y* - 0.00132x° + 0.000253x*y -
0.00007632x3y2 + 0.00001977x2y>+ 0.000004684xy* - 0.000001425y°

S = -1.592 + 0.07176x + 0.0341y + 0.006499xZ - 0.008611xy + 0.001713y>

S = -0.9605 + 0.0574x - 0.1024y - 0.01467x2 + 0.009038xy + 0.006647y” +
0.001343x3 - 0.00002344x2y - 0.0005146xy? - 0.00002641y>

S = -1.064 - 0.04879x + 0.03493y - 0.03781x% + 0.03417xy - 0.01263y? +
0.009817x3 - 0.005126x2y - 0.0002034xy? + 0.0007198y> - 0.0004908x* +
0.0001609x3y + 0.00007006x2y? - 0.00002309xy> - 0.00000845y*

S = -2.28 + 0.944x + 0.371y - 0.423x2 - 0.06124xy - 0.0476y% + 0.08784x -
0.00114x2y + 0.008833xy? + 0.001904y° - 0.007789x* + 0.0003322x%y -
0.000205x2y2 - 0.0003157xy> - 0.0000147y* + 0.00025x’ - 0.00000504x*y -
0.000003095x3y2 + 0.000008086x2y> + 0.000002909xy* - 0.0000001938y°
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Table 7.13 - Tumer stress smoothing polynomials (refined CST mesh)

S =-0.039 + 0.06141x + 0.002043y - 0.002725x% - 0.003556xy + 0.0008221y>

S=0.51011+0.1366x - 0.1681y - 0.02271x2 + 0.003742xy + 0.00983y? +
0.0006101x3 + 0.0005858x2y - 0.0004033xy? - 0.0001182y>

S =0.501 - 0.02049x - 0.07597y - 0.001607x2 + 0.01968xy - 0.00351y? +
0.000373x3- 0.001673x2y - 0.0005401xy? + 0.0004465y> - 0.00003432x* +
0.00003975x3y + 0.00004602x2y? - 0.000007925xy> - 0.000007251y*

S=0.1862 + 0.1011x - 0.06611y + 0.1174x2 - 0.1133xy + 0.02747y -
0.03218x3 + 0.008646x2y + 0.009438xy? - 0.0031y> + 0.002985x* +
0.000123x3y - 0.0006824x%y? - 0.000238xy> + 0.0001248y* - 0.0000922x -
0.0000079x%y + 0.0x%y? + 0.0000145x2y3 + 0.00000079xy* - 0.00000159y°

S =-1.239 + 0.04716x + 0.4226y + 0.01422x2 - 0.02482xy - 0.00193y? -

S = 0.4089 + 0.1094x - 0.03197y - 0.005225x2 - 0.001642xy + 0.01977y? -
0.001089x3 + 0.002496x2%y - 0.001543xy? - 0.0002065y>

S = 0.3438 - 0.1477x + 0.1505y + 0.03614x2 + 0.03247xy - 0.007506y -
0.005673x3 - 0.00005743x%y - 0.002126xy2 +0.0009176y° + 0.0003089x* -
0.0002046x3y + 0.0001907x2y? - 0.00003542xy? - 0.00001229y*

S =0.02015 - 0.626x + 0.4174y + 0.395x2 - 0.04725xy - 0.0265y2 - 0.088x> +
0.0000423 1x2y + 0.008073xy? + 0.000368y> + 0.0086x* - 0.0006335x3y +
0.000297x%y2 - 0.00049xy> + 0.00005806y* - 0.000307x> + 0.0000548x%y -
0.00002804x3y? + 0.000007519x2y3+ 0.000005508xy* - 0.000001306y°

S =-1.782 + 0.122x + 0.0442y + 0.003449x2 - 0.009177xy + 0.001441y>

S =-1.092 + 0.1442x - 0.108y - 0.02863x2 + 0.009283xy + 0.007144y> +
0.002026x3 - 0.00008864x2y - 0.0004913xy? - 0.00004331y>

S =-1.237 + 0.02735x - 0.02508y - 0.1311x2 + 0.03314xy - 0.005875y2 +
0.01912x3 - 0.003733x2y - 0.000557xy? + 0.0004753y> - 0.0007873x* +
0.00007442xy + 0.00006826x2y - 0.00001512xy> - 0.000005812y*

S = -2.327 + 0.8856x + 0.4347y - 0.422x2 - 0.042xy - 0.06231y2 + 0.0937x3 -
0.009295x%y + 0.009168xy2 + 0.003004y> - 0.008746x* + 0.00123x>y -
0.0002126x2y? - 0.0003394xy> - 0.0000504y* + 0.00029x° - 0.0000345x%y -
0.00001082xy? + 0.000008993x2y> + 0.000003068xy* + 0.0000002293y>
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Figure 7.35 - Oy, stress smoothing along line A - Turner wing
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Figure 7.36 - Oy, stress smoothing along line A - Turner wing
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Figure 7.38- O,y stress smoothing along lines B and B, - Turner wing
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Figure 7.40 - G, stress contour plot - ELFINI finite element model
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Figure 7.41 - Gy stress contour plot - ELFINI finite element model
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point stresses of the CST elements and the linear stresses of the LST elements.

It should be remembered, however, that both Gy, and Oy, are significantly small as
compared with Gy, Thus, failure predictions for the Tumner wing by the current CST/LST
modeling technique and ELFINT as well as test data will all be in good agreement. Also,
there is a doubt as to the accuracy of measured Gy and Gy, values, and large stress gradi-

ents at the root trailing edge are certainly affecting accuracy of these small stresses.
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CHAPTER 8
ANALYTIC SENSITIVITY RESULTS

8.1 Introduction

Analytic sensitivity calculations are checked by corresponding finite difference deriv-
atives. In addition, computational efficiency issues of employing analytic sensitivities ver-
sus finite difference sensitivities is evaluated. The wing models of choice for all future
discussions are the Gallagher model | wing (adrib = 4) and the Denke wing (adrib=2) both

having shear web CSTs.
8.2 Analytic sensitivities vs. finite difference sensitivities

With respect to finite difference methods, the expression
—= = (8-1)

describes the derivative of any behavior function "x’ with respect to a change in any vari-
able ‘v.” For large perturbations in ‘v,” truncation error results in inaccurate derivatives
due to it being a first order approximation, while theoretically as Av approaches zero, the
approximation becomes exact. Realistically, this process introduces round-off errors due
to computer finite length representation of numbers (Ref. 1).

As an example of shape design variable sensitivity, the Gallagher model under a uni-
form load and it’s perturbed version with respect to both xgg and yg are compared. The
analytic sensitivities of the vertical displacement at the trailing edge tip, the first natural

frequency, the leading edge root cap stress and the spanwise plane stress Gy in the CST
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leading edge wing skin root element are calculated. [n using finite differences, perturba-
tions of 0.001% to 0.1% of the characteristic dimension (chord length for xgg and span
length for yg) are used. The results are found in Tables 8.1 and 8.2. The Denke wing
model under a 100 Ib. trailing edge tip load is tested in the exact same fashion as above.
Results are shown in Tables 8.3 and 8.4. Since the program is written in double precision,
round-off errors in the finite difference scheme for small perturbations do not show for the
range analyzed. For larger perturbations, truncation error explains any discrepancies. The
analytic sensitivities are seen to be in complete agreement.

As an example of sizing design variable sensitivity, the Gallagher model is used and
the same sensitivities are sought, this time with respect to the cross-sectional area of the
leading edge spar cap element. Table 8.5 shows the results. Again, the same performance
as detailed for the shape sensitivities is achieved.

To further exhibit the accuracy of the Gallagher model’s analytic sensitivities, a com-
parison between those found from the best CST model (adrib = 5) and those from the LST
model is shown in Table 8.6. Since the maximum deflections differ by 6.7%, it can be
assumed that all sensitivities would yield closer results if each wing model’s deflection
behavior were more similar.

A parametric study to assess the usefulness of analytic sensitivities for future optimi-
zation usage is performed using the Gallagher model 1 wing under a 100 Ib. trailing edge
tip load. Shape variable xgg is incrcmcnﬁlly perturbed to alter the wing planform. The
trailing edge tip vertical displacement, the second natural frequency, the trailing edge root
cap stress and the spanwise plane stress Oy, fora centrally located CST wing skin element
are plotted versus xpg in Figure 8.1. First order Taylor series representations for each out-

put are obtained from
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Table 8.1 - Analytic vs. finite difference xgg sensitivities - Gallagher CST model |

Shape design variable: leading edge wing tip x-location (xgr)

Output Analytic Finite Difference Sensitivity
Parameter Sensitivity design variable perturbation
.001chord .01chord .Ichord
trailing edge tip
displacement 0.0206 0.0206 0.0207 0.0213
(in./in.)
Ist natural
frequency 0.991 0.991 0.994 1.023
(Hz./in.)
leading edge
root cap stress -269.69 -269.33 -269.87 -271.61
(psi/in.)
leading edge root _ )
wingskin sigma Y -697.16 -697.33 -697.13 -696.03

(psi/in.)
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Table 8.2 - Analytic vs. finite difference yg sensitivities - Gallagher CST model !

Shape design variable: wing tip y-location (yR)

Output Analytic Finite Difference Sensitivity
Parameter Sensitivity design variable perturbation
.001Ispan .Olspan .Ispan
trailing edge tip
displacement 0.1082 0.1083 0.1091 0.1173
(in./in.) :
Ist natural
frequency -3.68 -3.68 -3.63 -3.21
(Hz./in.)
leading edge
root cap stress 537.16 537.12 535.49 520.00
(psi/in.)
leading edge root
wingskin sigma Y 590.29 589.99 588.44 571.43

(psi/in.)
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Table 8.3 - Analytic vs. finite difference xgg sensitivities - Denke CST model

Shape design variable: leading edge wing tip x-location (Xgg)

Output Analytic Finite Difference Sensitivity
Parameter Sensitivity design variable perturbation
.001Ichord .Olchord .Ichord

trailing edge tip

displacement 7.798x10° |  7.830x10® 8.250x 100 9.081x10°
(in./ in.)
Ist natural
frequency 1.617x103 | 1.567x1073 1.129x10°3 0.253x10°3
(Hz./in.)

leading edge

root cap stress 0.180 0.180 . 0.176 0.139
(psi/in.)

leading edge root

wingskin sigma Y 0.667 0.667 0.660 0.616

(psi/in.)
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Table 8.4 - Analytic vs. finite difference yg sensitivities - Denke CST model

Shape design variable: wing tip y-location (Yr)

Finite Difference Sensitivity

Output Analytic
Parameter Sensitivity design variable perturbation
.001span .Olspan .Ispan

trailing edge tip

displacement 1.082x1073 1.083x1073 1.089x103 1.155x1073
(in./in.) :
Ist natural
frequency -1.61 -1.61 -1.60 -1.53
(Hz./in.)

leading edge

root cap Stress 8.32 8.32 8.33 8.40
(psi/in.)

leading edge root

wingskin sigma Y 5.63 5.65 5.85

(psi/in.)

5.64
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Table 8.5 - Analytic vs. finite difference A| sensitivities - Gallagher CST model |

Shape design variable: leading edge root cap area (A

Output Analytic Finite Difference Sensitivity
Parameter Sensitivity design variable perturbation
001A; O1A; JdA
trailing edge tip
displacement -0.0716 -0.0716 -0.0716 -0.0709
(in./ in.2)
Ist natural
frcqucncz' 2.65 2.65 2.65 2.63
(Hz./ in.%)
leading edge
root cap stress 19152.7 19150.7 19134.2 18970.2
(psi/ in.2)
leading edge root
wingskin sigma Y 21046.9 21044.8 21026.6 20846.4

(psi/ in.2)
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Table 8.6 - CST vs. LST analytic shape sensitivities - Gallagher CST model |

Output parameter: trailing edge wing tip z-displacement

CST nodal displacement = 1.253 in.

LST nodal displacement = 1.343 in. (6.7 % difference)

Analytic Sensitivity
CST LST Percent
Design variable model model difference

XFL 0.044846 0.049825 9.99

XAL -0.057923 -0.064331 9.96

XER 0.022222 0.025040 11.25

XAR -0.009145 -0.010533 13.18

YR -0.115513 -.127102 9.12

YR 0.115513 0.127102 9.12

o 0.392320 0.399118 1.70
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Figure 8.1 - Xggr parametric study - Gallagher CST model 1
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of (xgg)
f(pr) =f(xFR|0) + ax:: . (XFR —XFRlo)

(8-2)

and also plotted. Here, ,t,,R|0 is the original value of xgg and f(.rFR!O) is the value of

any parameter. Additionally, reciprocal first order Taylor series approximations (Ref. 1)

are calculated tfrom

af(pr)
Oxpp

1 1
(xpg) =f(xpgl) = (gl t @) - (8-3)
f(xgp FRlo FRlO \xrrta "FR'O"”"
Here, ‘a’ is an offset variable to allow for our xFRIO = 0 case. Figure 8.1 shows the
reciprocal approximation when a=-30. As can be seen, first order approximations to the

non-linear data yield good accuracy for relatively large perturbations in Xgg.

8.3 Computation time assessment

The Gallagher model 1 wing is used for evaluation of CPU time required for analytic
sensitivity calculation. A CPU breakdown of each section of the finite element program is
shown in Table 8.7 with an explanation as follows. Static solution time includes solving
for every degree of freedom’s displacements and all finite element stresses. Dynamic solu-
tion time includes computing all natural frequencies and mode shapes (equal to the num-
ber of degrees of freedom). Design variable sensitivity time includes calculating all
displacement, clicmcnt stress and natural frequency sensitivities with respect to any single

shape or size type variable.
In looking at the model with four divisions per section, it can be seen that the total
CPU time to compute the model's displacements, stresses, natural frequencies and mode

shapes is 271.811 seconds, with either an additional 14.503 seconds to calculate one set of
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Table 8.7 - Finite element code CPU breakdown - Gallagher CST model |

CPU seconds / module

Program Number of dummy ribs per section
module 0 1 2 3 4
degrees of freedom 90 180 270 360 450
finite elements 156 264 420 552 684
program initialization 0.100 0.152 0.227 0.316 0.363
form global stiffness
and mass matrices 10.098 0.176 0.316 0.426 0.496
static solution:
* displacements 0.113 0.855 2.656 6.020 11.402
* stresses 0.016 0.031 0.051 0.062 0.074
dynamic solution:
* natural frequencies
and mode shapes 3.527 20.065 60.336 138.784  259.476
shape variable sensitivity:
* w.r.t. one variable 2.695 4.883 8.277 11.292 14.503
* w.r.t. all shape variables 18.865 34.181 57939  79.044 101.521
sizing variable sensitivity:
* w.r.t. one variable 0.046 0.098 0.177 0.263 0.361
* w.r.t. all size variables 7.222 25.846 74.144 145.385  246.719
solution time:
* no sensitivities 3.854 21.279 63.586 145.608  271.811
solﬁtion time:
* all sensitivities 29.941 81.306 195.669  370.037  620.051




112

analytic shape sensitivities or an additional 0.361 seconds to calculate one set of analytic
size sensitivities, for a worse case run time of 286.314 seconds. Using finite differences,
this same model would have to be analyzed twice (543.622 seconds total) before even pro-
ceeding with the differencing calculations, thus showing the huge computational advan-
tage of computing the sensitivities analytically within the program.

Notice the disproportionate amount of time required to calculate the complete set of
model natural frequencies and mode shapes. In the future a new eigenproblem solver will

be added that will solve for only a user specified number of frequencies which will drasti-

cally cut down the run time.



CHAPTERY
CONCLUSION

A fresh examination of wing finite element modeling practices shows that accurate
displacements and natural frequencies can be obtained using simple triangular elements
(such as the CST and LST) together with rod elements. Smoothing and averaging of
resulting stresses lead to globally reliable stress predictors. With automatic mesh genera-
tion and dummy elements, finite element models of wings, including their skins, ribs and
spars, can be generated efficiently. The elements used make it possible to obtain deriva-
tives of behavior functions such as displacement, stress and natural frequency analytically
with respect to shape and sizing design variables.

Extensive numerical tests comparing predictors of the current capability developed
with experiments and commercial finite element codes are described. Analytic sensitivity
calculations are compared to finite difference results and optimization package usage of
these sensitivities is explained. Thus, the optimization of wing structural systems during
conceptual or preliminary design phases can be made practical and computationally cost
effective.

Future extensions of this work include:

a) composite material capability,

b) efficient computation of low frequency modes,
c) skin buckling predictions,

d) integration with aerodynamic loads,

e) reliable weight estimation for as-built wings.

The work can also be extended to the modeling of whole airplanes.
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APPENDIX A
ELEMENT STIFFNESS, STRESS AND MASS MATRICES

A.]1 Rod element

A.1.1 Stiffness matrix

The stiffness matrix for a linear, three dimensional rod in its local coordinates (Ref.

14) is given by

(k) = 22 [_‘I ‘l‘] (A-D)

where A is the cross-sectional area, E is the Modulus of Elasticity, L is the element length
and the two degrees of freedom are the axial displacements u} and uy only. To transform

this to the global system, the equation [kglobal] = [T]Tx [klocal] x [T] is used with

— |cxcyez 0 0 0 A2
7] [O 0 chcyczj] (A-2)

where cx = X2% l)/L, cy = (y2'yl)/L, cz= (12'21)/L (directional cosines) and

L=J0-x)%+ (yy-y) 2+ (,-2,)° (A-3)

to arrive at the symmetric 6x6 global stiffness matrix
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2 2 )
cx® cxey cxel —exT —excey —exel
2 2

cxcy ¢y cyez —cxey —cyt —cyes
2 2

_ AE| ¢xcz ceycz ¢zt —cxez —cycz —cz
(k;] = —
o L 2 2 i
—-CX —CXCV —CXCl cXxX cCXCy (X2

2 2
—cxcy —C¢y~ =yl ocxcy ey ocyez

2
|~cxcz —cycz —=¢Z” cxez cycz ¢

A.1.2 Stress matrix

The axial stress is a scalar and is found through Hooke’s stress/strain law o = Ege .
To find the local strain in the rod, this is simply the change in length divided by the origi-

nal length in matrix form as
1 — — 1
€1ocat = T (2= #)) = T[-1 1] {U.} (A-4)

with {UL}'r = {u;, u}. Global strain is found using the previous transformation

[TI{Ug} in place of {U}:
€global = %["1 ] [T] {Ug} (A-5)

where (UG}T = {uy, v{, W], Up, V2, w2 }. In matrix form the stress can now be given as a

scalar using known global displacements as
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o= 701 -0[ e (A-6)

or in explicit form as

E[(xz_xl) (uz_ul) + (."2')’]) (Vz" "1) + (ZZ_:I) (Wz_w|)]

o (A-7)

2 2 2
(x=x) "+ (y,—y)) "+ (z,-2))

A.1.3 Mass matrix

The mass of a rod element is equal to pAL where p is the mass density with A and L
defined previously. To form the 6x6 lumped mass matrix in the global system, the mass is

allocated evenly to each degree of freedom by dividing by the number of nodes. Thus

(100000
ALOIOOOO |
PALIo0 1000
= PAL A-8
Mrod = 771000100 (A-8)
000010
00000 1]
A.2 CST element

A.2.1 Stiffness matrix

The derivation of a constant strain or constant stress triangular element is taken
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directly from Ref. 23 and Figure A.l. Its basic assumptions are:
1. isotropic material
2. uniform thickness ‘t’
3. plane stress state
4. constant strain in field

Based on element geometry, the displacement state in local coordinates is

B(xy)| _ [(-(b=5)x=hy)dp+ (=5 (x=5) +h(y=s))iy+xbig (A-9)
v(x,y) (= (b—=s)x=hy)vp+ (=s(x—5) +h(y—s))\7Q+xb\7R

where b, s, h and a are local geometric variables (b is the major base, s is the minor base, h

is the element height and a is the total area). The strain-displacement relation obtained by

differentiating the above with respect to x, y and z is then

( uP
‘_’P
€ux 1 -(b-y5) 0 - 0b0 i
{ey,}=ﬁ 0 -n 0 k00§ % =[B{U) (A-10)
€ -h —(b-s) h —s0b|| @
xy Up
vp

and the displacement transformation law from global coordinates is
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up
i , vp
[ r 11 we
(B @ @]
< Zf =1l W] ver = (A] 1UG (A-11)
)
g [0 [ M| "
el “r
R VR
Wp
where
- Iym n )
-l a2
and
_looo _
o = [ooo} (A-13)

The I, m and n terms are direction cosines of the local axes with respect to the global

axes with

L= 2 = (3) (s =xp) = xp) (A-14)
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]
m, = ;(.vk-(g) (Yo=Yp) —¥p) (A-15)
o Sy .
n,.= h ("R_([';) (-Q"zp) "Lp) (A-16)
l, = ; (xg—xp) (A-17)
1
my = E(.VQ-YP) (A-18)
— 1 -
Due to the plane stress assumption, Hooke’s Law gives
Uxx E Lv 0 Exx eu
_ vi 0 -
{cyy}—l—VZOOl—v{eyy}—[D]{eyy} (A-20)
Oy 2 ) €xy _

where E is the Modulus of Elasticity and v is poisson’s ratio. To find the stiffness matrix

in local coordinates, integrating over the area via

] = [ B = 6 B Ees = £] +[] =

assuming a constant thickness ‘t’ results in
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(b—5)2 v(b=s)h (b~s)s—v(b=s)h~(b-5)b0
v(b-s)h h? vhs —h? ~vbh 0
[-J - Et (b-5)s vhs s? —vhs -bs 0
®o4a(l-V) L (p-s)h -RE —vhs K2 vhb 0
—(b-s5)b -vbh -bs vhb b0
0 0 0 0 0 0
(A-22)
and
n? (b-s)h  —h® hs O —-bh
(b-s)h (b—5)2 =(b=s)h (b-5)s0—(b-s)b
[/Z]= Et ~h? —(b-s)h AK® ~hs 0  bh
: 8a(1+v) hs (b-s)s —hs s 0 —bs
0 0 0 0 0 0
| -bh  —(b-5)b  bh ~bs 0 b |
(A-23)

The 9x9 global stiffness matrix for the CST is then

k)= WN (A2

A.2.2 Stress matrix

Using Hooke’s Law again, the 3x1 CST stress vector is given by

(e} =@ ey} = W0 - AT 0 *29

o
xy xy



A.2.3 Mass matrix

The mass of a CST element is equal to pAr where p is the mass density with A and t
defined previously. To form the 9x9 lumped mass matrix in the global system, the mass is

allocated evenly to each degree of freedom by dividing by the number of nodes. Thus

10000 0]

010000
PATI00 1000

__ pAr (A-26)

ST T3 000100

000010

00000 1

A.3LST element

A.3.1 Stiffness matrix

The derivation of a linear strain triangular element is taken directly from Ref. 17 and
Figure A.1. It’s basic zissumptions are:
1. isotropic material
2. uniform thickness
3. plane stress state

4. linear strain in field

The local 12x12 stiffness matrix is given by

] = b (90 (a2



with

and

C11

at

11
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—b, 0 -b, 0 4b, 0 O

0 -a, 0 —ay; 0 4aq, 0

0 3u, 0 —a; 0 4a; 0 day 0

0 -a, 0 3¢; 0 0 0 4a;, 0 4q
-a, ~b, —a, -by 4a, 4b, 0 0 4a;4b,
3a, 3b, ~a; ~b; 4a 4b, 4a; 4b,; 0 O
-a, =b, 3a; 3b; 0 0 4a, 4b, 4a, 4bU

2¢ € ¢y 25 ¢ € O
¢y 2eyy €y € 2¢p5 ¢ 0

2¢c)y €3 €13 2¢y5 O

2c1p €1 €13 2¢c) €y €y O

M = 13| €12 2ciy €3 €5 2¢p ¢y O

0
0
0

0
0
0

€13 €13 €13 €33 €33 263 0
0 2c¢3; c33 ¢33
0 0 0 0 c33 2¢c535 €3
0 0 0 0 ec33 c33 2¢3

0 0 0

S O O O O

0

0 4b, O
3b, 0 =b; 0 4b, 0 4b, 0 0 O
-b, 0 3b, 0O 0 O 4b, 0 4b O
0 0 4a,

o O O O O

0

-

0

(A-28)

(A-29)

E( -
where 1= Cxp = E/(l . v2), Cia= VE/(I_ V2) and C33 = a v)/z(] . v2) = E/2(| +v) The

global geometry variables { B} = {ay, a3, a3, by, by, b3} are linked to the local geometry

variables {G} = {b, s, h, a} by



To find the 18x 18 global stiffness matrix, transformation is the same as for the CST in

section A.2.1 using

T T
kg = [ta T gt 1) = [ R (A30)

A.3.2 Stress matrix

Using Hooke’s Law, the 9x1 stress vector consisting of Oyy. Oyy and Oyy for each of

the three end nodes P, Q and R is

y p xy p
O [C] (0] [0] €., o
X { O'yy} > = | [0] [C] [0} {eyy} s = [C] {€} (A-31)
o, 0 (0 tcy] | le
e | 7 0
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where
v 0
E
[C]_I 2Vl|0v
-V bnd
00 7
and

{€} = [M]{U,} = [M][A] {Ug}

Therefore,

< {E;;‘} = (0a[A] v

(A-32)

(A-33)

(A-34)



b=Yq-Yp
s=Y1-Yp
h=Xgp-Xt
a=1/2bh

—- Xloca]

CST element [P Q R]

Yiocal

b=Yqo-Yp
s=Y7-Yp
h=Xg - Xt
a=1/2bh

a2=0

b,13] b3

» Xjocal

LSTelement[PQRTU V]

Figure A.l - Triangular membrane elements used



APPENDIX B
ELEMENT COORDINATE SHAPE VARIABLE DERIVATIVES

B.1 d{X)}/d(XgL, XAL> XFR» XAR> YLs YR)

Based on the geometry in Figure 3.1. it can be seen that every 'y’ value at point

‘i is a linear combination of y|_and yg such that

Y, =y o, (.VR ")'L) = (1 _I’,).VL'*I’;.VR (B-1)
where pg = percent span ratio in the y-direction and is given by
Yi—y
i L (B-2)

Ps = 573,

Now, diffcfentiating y; with respect to the six shape varables yields

dy/dxg_ =0
dy/dx . =0
dy;/dxgr =0
dy;/dxagr =0
dyy/dyL =1-ps
dy/dyg = ps

For the ‘x’ values at point ‘i,” if ‘i’ is along either the wing root or wing tip, the situa-

tion is the same as for the ‘y’ values above. Along the root, ‘x’ is given by



x; = XpptPre (Xap = Xp) = (L=pr ) Xpy +PrcXag (B-3)
while along the tip, *x’ is given by
X = xppt Py (N =Xpp) = (L =P ) Xpp 4Dy Xag (B-4)

where p,. = percent chord ratio along the root and p. = percent chord ratio along the tip

and are given by

X, —X
P, = ——t (B-5)
XaL ™ XFL
and
_ X7
P = Saa e =

Therefore, differentiating x; along the root with respect to each shape variable gives

dx,/dxp = | - prc
dx;/dX AL = Prc
dxy/dxgg =0
dxy/dxpg =0
dx,/dy =0
dx/dyg =0

while doing the same along the wing tip yields -
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dxy/dxg =0
dxi/dxAL =0

dxi/dxgr = | - py¢

dxi/dx AR = Py
dxy/dy =0
dXi/dyR =0

For all remaining nodes, the ‘x’ values are a linear combination of all four ‘x’ -valued
shape variables. Fortunately, due to the nature of the wing geometry, since we know the
‘x’ derivatives along both the root and tip, it is a straightforward process to interpolate

what they should be for any point ‘i’ across the span. In other words

= () ot P l(x) = () ) (B-7)
or
x;= [(U=p)xpp+p,ex ) (1=p) + [(1=p)xpp+p X, LlP, (B-8)

where pg has been defined above (eqn. B-2). Differentiating with respect to each shape

variable then yields the more general and final form of

dx/dxpp = (1 - prI(L - pg)
dx/dx a1, = prc(1 - Ps)
dx;/dxggr = (1 - p)Ps
dxy/dx AR = PycPs



dxi/dy =0

As one can see, this reduces to the simplified forms along the root and tip above when
ps equals 0 and 1. respectively. When the depth distribution is given in global coordinates,
then all ‘z’ values at point ‘i” are independent of these shape variables so that their deriva-
tives are equal to zero. If the depth distribution is dependant on the wing trapezoid shape,

sensitivities with respect to shape variables must be included.

In summary,

9 [ % (1-p,) (1-p)

mir sl
FL 2, 0

a1

T B i 0 (B-10)
XAL 2 0 .
a1 '

Ixee Yit = 0 L (B-11)
XFR 2 0

d i PPy
—{vt=1 o0 e
AR
z 0
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X 0
a-yL i s
0
X 0
a i
aT{ y"} ) {’} o
Bl 0

B.2 d{X}/d(Q)

Based on the geometry in Figure 3.1, it can also be seen that for any nodal point ‘1’,
if given a ‘y’ value, then the corresponding ‘x’ value is given by
(B-15)

x; = yana+C

where C is any constant. If all ‘y” and ‘z’ coordinates are assumed to be independent of the

sweep angle, differentiating with respect to the design variable Ot gives

3 (% y;(sec (o))
sl b= 0 (B-16)
Z; 0



APPENDIX C
SHAPE VARIABLE SENSITIVITIES

C.1 Global displacement sensitivity with respect to any shape variable

From the basic static equation [K]{U} = {F}. one can differentiate with respect to

any shape design variable B to get

d{U} 9[K] d{F}
I:KJ op + op {U}y = 9B (C-1)

where [K] is the global stiffness matrix, {U} is the global displacement vector and {F} is

the global load vector.

For any loading case in which the applied loads are independent of model geometry,

(K] ‘ (C-2)

With [K] and {U} having already been computed, and the partial derivative of
displacement with respect to any shape design variable desired, it is only necessary to
compute the global stiffness matrix derivative. This is done on an element by element

basis and the individual results are then merged as done when forming [K] previously.
C.1.1 Rod element stiffness sensitivity

Using chain rule differentiation, the derivative of a rod element stiffness matrix with

respect to any shape design variable is
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ok 3k ayx)
3 - (X op (C-3)

where { X} = {X[, ¥|. Z|. X2. ¥2. 2 }. The partial differentiation of { X} with respect to any
design variable has previously been calculated in Appendix B. To find the partial deriva-
tive of [kg] with respect to the rod element’s nodal coordinates {X}. straight-torward
chain rule differentiation is carried out (with the following simplifications: Ax = x, - x|,

Ay =y, -y, Az = 25 - z;) with ‘i’ ranging from | to 6:

3]}4 | 144], -[AA], (C-4)
9X;  |-[AA]; [AA],

where

(Ax)3  (Ax)?Ay (Ax)2Az 1| 2A% &y Az
[AA], = =—5-| (Ax)2Ay (Ay)?Ax AxAyAz|~ 3|4y 0 0 (C-5)
(Ax) %Az AxAyAz (Az)2Ax Az 0 0

(Ax)3  (Ax)?Ay (Ax)2Az A |28% Ay Az
il (Ax)2Ay (Ay)2Ax AxAyAz|+—5|4dy 0 0
(Ax)2Az AxAyAz (Az)zAx Az- 0 0

(C-6)

[44],

(Ax)Ay (Ay)*Ax AxAyAz| 10 Ax 0
[AA]; = = (Ay)2Ax  (Ay)3 (Ay)2A =73 |Ax 28y Az (C-7)
AxAyAz (Ay)*Ax (Az)?Ay 0 Az 0
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(Ax)2Ay (Ay)2Ax AxAyAz 0 Ax 0

[AA], = —F (Ay)3Ax  (AY)? (Ay)iax+ 3 [Ax 28y Az (C-8)
AxAvAz (Av)2Ax (Az)?Ay 0 Az 0
(Ax)2Az AxAvAz (Az)*Ax 0 0 Ax

[AA)s = =5 | AxbyAz (Ay)%Az (A2)2Ay| = =50 0 Ay (C-9)
(Az)2Ax (A2)2Ay (Az)? Ax Ay 24z

(Ax)2Az AxAyAz (Az)%Ax 4g|0 0 Ax
[AAg = == 5| AxAyAz (A¥)?Az (A2)?Ay|+ 510 0 Ay (C-10)
(Az)2Ax (Az)2Ay (A2)? Ax Ay 2Az

Then, the 6x6 rod element global stiffness matrix sensitivity with respect to shape design

variable B is
kg . dkJax, 3[kqax, 3[kg) ax, (C-11)
aB = aXl aﬁ + aX2 aﬁ +...+—876-—B‘E

C.1.2 CST element stiffness sensitivity

Chain-rule differentiation of 9x9 CST stiffness matrix [kg] with respect to any shape

design variable gives

ofkg  3kd a(xy
ap " d{X} OIP

(C-12)



138

so that only the partial derivative of [kg] with respect to { X} needs to be found. To calcu-

late this, differentiation of the matrix expression for [kg] yields

eq [

- T
X7 - (A] lk'-]a{x}

ok A 13

T
+ [A] HX} Al + ITXT (k1 1A]

Qv

where {X} = {x]. ¥}, 2, X2, ¥2, 22, X3, ¥3, 23 }. All undifferentiated matrices are known so
that the only unknowns are the transformation matrix derivatives and the local stiffness
matrix derivatives each with respect to nodal coordinates.

Before proceeding, all geometric variables will be linked to each other through

Figure A.1 and the following equations:

{L} = {1}, 5, 13} = function of {X} only where
1y = (3 - %9 + (3 - ¥2)? + (23 - 1)1
I = [(x3 - x)% + (y3- y)? + (z3 - 222
3= [(xg - x? + (y2- y? + (22 - 2 A
{G} = {b, s, h, a} = function of {L} only where
b=ly
s= (2 + 152 - 1, 2)/(2ly)
h = (1,2 - (% + 132 - 1,9%(413%)]12
a= () L% - (1,2 + 152 - 1, 20413H) 2
[k} = function of Young’s Modulus, thickness and {G} only
[A] = function of {G} and {X} only
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C.1.2.1 dik Jd{X}:

Chain rule differentiation of the 6x6 [klocal] with respect to vector { X} gives

ok 3k) a(cyaiLy
J{X}  9{GYo{Ly I (X} (C-14)

where

k] e 3[kg (C-15)

3{GT _ 9{C} T 9(C)

and the following derivatives are used:

[2(b=5) vh s —vhs=2b0

— vh 0O 0 0 —-vh O

akd: Et s 0 00 -5 O
G,  4a(1-v})| -vh 0 0 O vh O (C-16)

s—2b -vh-s vh 2b O

0 000 0 O

_2(s—b) —vh s —vh s—-2b 0]

_ Vi 0 0 0 =-vh O
aw: E: s 0 00 -s O 17
3G,  4a(1-v)| —vh 0 0 0 vk O (17

s=2b —-vh-s vh 2b O

0 000 0 O




0
_ (b-s)v
a["»ﬂ= Er 0
9G;  4a(1-v)|-(b-95)v
0
0
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(b=-s)v 0 —(b-s5)v O 0]
2h sV -2h  =bv 0
sV 0 —sv 0 0
-2h  -=sv 2h bv 0
-bv 0 bv 00
00 0 0 0

(C-18)

r--([7—-s)2 —(b=-s)vh —(b-5s)s (b—s)Vvh (b-s)hO—
Ik —(b-s)vh  -h? sV n? vbh 0
[kf‘{-l - E: —(b-3s)s sV —52 vsh bs 0
G,  44*(1-v?) 2 2
(b-s)vh h vsh ~h —vbh 0
(b-s5)b vbh bs —vbh -»* 0
0 0 0 0 0 0
(C-19)
(0 h 000 -h
a h 2(b-s) -h s 0s-2b
kg __Et |0 -h 000 h (C-20)
oG, 8a(l+v)|o s 0 00 -s
0 0 000 O
-h s-2b h -s0 2b |
(0 - 0 h 00]
- -h-2(b-s) h b-2s0 b
d
["SJ= Et_ o n 0 -h 00 (C-21)
d0G, Ba(l+v)|p p-25 -h 25 0-b
0 0 0 0 00
0 b 0 -b 0 0]
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[ 2h (b-s) -2h s 0-Y
_ (b-s) 0  —=(b=5) 000
)
2 __Et | p —(b-s) 2h -sOb
863 8(1(1+V) s 0 -5 000
0 0 0 000
. - 0 b 00 0]
-  —(b-s)h -2h —sh 0 bh
3 ~(b-s)h—(b—-5)2 (b-s)h—(b-5)s0 (b-5)b
2 ___Er b (b-s)h R sh 0 ~—bh
9G, 8a(l+v) -sh  —(b-s)s sh -s2 0 bs
0 0 0 0 0 0
| bk (b-s)b  —bh bs 0 -b*
along with
[ 0 0 1 ]
!, l B+2-1
L Ly 21
d{L} 12737 0) i Ti3Th (2+12-1 270714
2hi} 2h12 4nl
LZ+B-P) LW+ B-18) LB+E-1)
L 8a 8a 8a

and

(C-22)

(=)

(C-23)

(C-24)
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0 0 0

QW
——
t~
—_

X =Xa M7y 475 X3 =X Y3~V 437
L L L L L, L
Xy =Xy Xp =Xy 3= 2y X T X YTV 74
[ s 3 s /s I

@
—
S
A aad

(C-25)

Thus, to find the derivative of [k ] with respect to any X;, chain rule summation yields

o) oK) 36, aqry 2k 3G, aqu
39X, ~ 3G, 3(L} 9X, ' "7 3G, a(L} oK,

(C-26)

G; d{G} o{L} .
J e (34 — (33
where 1L is the 1x3 row j’ of 3L} and _ax,. is the 3x1 column ‘i’ of
d{L}
d {X}
d [A] M[X]:

Chain rule differentiation of the 6x9 transformation matrix [A] with respect to { X}

gives

DAl oA agcyatrLy 9
DX} ~ 3(G) o{L} 3 (X} ' 3(X} (C-27)
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DiA

DTXT is the total derivative since there is explicit dependance of [A] on (X}.

where

The following new derivatives are used:

a[/\] [AA], [0] (0] .
5e = [0] [(AA}, (0] (i=1tod) » (C-28)

0] [0] [AA],

with
Fs(xz'xl) S(.Vz"."j) S(Zz_zl)-
b*h b2h b2h
[AA], = )
! (x,=x)) =y (z,-2) (C-29)
- B2 - b2 - b2
(xz_xl) (y.—y)) ' (z-27y)
(AAl, = "7 BR ~~ Bk bh (C-30)
0 0 0
x3—%(x2—x,)—x1 )’3-%()’2'>’|)‘y1 Z3“%(22"21)_21
[AA], = |- - -
3 ) 2 2 2
h h h
0 0 0

(C-31)

[AA], = {g g g] (C-32)
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and

aw [BB], [0] [0]

v = | (01 [BB]; [0] (= 1t00:
‘|0 (0] (BBl

with
Teé-noo
(88], = |" bl
—E 00
I s
0-(+-DO0
[BB], = h bl
0 " 0
1 s
00+(+-1)
(BB], = h bl
- 100 -3
K)
-=00
[BB], = Ifh
5 00
0-20
[BB] = llvh
0 5 0

(C-33)

(C-34)

(C-35)

(C-36)

(C-37)

(C-38)
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00-2

(BB], = ’l’" (C-39)
00 5
|

B8], = | 2" (C-40)
000
olo

[BB]g = |" h (C-41)
000

- lolo

(BBly=|"h

000 (C-42)

C.1.3 LST element stiffness sensitivity

Chain-rule differentiation of [kg] with respect any shape design variable gives

okg _ kg a(xy
9~ J{X} OB (C-43)

so that only the partial derivative of [kg] with respect to {X} needs to be found. To calcu-

late this, differentiation of the LST matrix expression for [kg] yields
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T
alk.. 3z )
a{[);]} = [A) “‘L]a{@} + [A] a{[xL]} Ml*a{[xJ} [k,] [A] (C-44)

where {X} = (X}, ¥}» 2. X2. ¥2. Z2. X3. ¥3} even though the LST has twice the number of
nodes of the CST element. The reasoning is that since the side nodes are assumed to be
placed at the mid-point of each side. their location depends on the corner nodes. All undit-
ferentiated matrices are known so that the only unknowns are the transformation matrix
derivatives and the local stiffness matrix derivatives with respect to nodal coordinates.
Like the CST element, all geometric variables will be linked to each other through

Figure A.1 and the following equations and vectors:

{L} = {1 13} = function of {X} only where

1y = [(x3 - X0)? + (y3 - )2 + (z3 - 2212

Iy = [(x3 - x)? + (y3 - y)? + (23 - 27112
I3=[(xp- X2+ (y2 - yp)? + (22 - 2117
{G} = {b s ha} = function of {L} only where
b=l | |
s= (% + 132 - 1,2/213)
h = [1,2 - ()2 + 152 - 1,9 %(413H) 72
a=(1) B2 - (12 + 152 - 1,2)/413%)) 2
(B} ={al a2 a3 bl b2 b3} = function of {G} only where
al =-h_
a2=h
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b3=b
(kL] = function of Young’s Modulus, thickness. {G} and {B} only
[A] = function of {G} and {X} only

diky Vd{X}:

Chain rule differentiation of 12x12 [k ] with respect to { X} gives

ofk) 3k amy 3y L 3lk] () | s
d{X} ~ o{B}YJ{G} a{X} J{G}a{X} (C-45)

From the CST element in Appendix C.1.2 we have the 4x9 derivative matrix d{G}/d{x}
already. Differentiating each component of { B} with respect to each component of {G}

gives the 6x4 matrix

L

O OO
|
Pt

Do o0o oo,

a{B} _

3{G

(C-46)

—o I
ol ~mococo
cooc o —

All that remains is the single derivative of [k ] with respect to both {B} and {G}
where [k ] = [M]T[N][M] from Appendix A.3.1. Differentiation of the 12x12 local stiff-

ness matrix against the six components of vector {B} yields

k] o, o
357 = M7 gy * 3y M (M) (C47)

with all undifferentiated matrices previously known ([N] is not a function of {B}).



Straightforward differentiation of Yx 12 [M] with respect to (B} yields

oM _ 1

3B,

o _

35,

-1 00000400000
-1 00000000040

148

0 00000000000
0 00000000000
0 00000000000
0 30000000000
0 -10000040000
0-10000000004
3 000000000060

000 000000000
000 000000000
000 000000000
000-100040000
000 300000000
000 ~-100000400
00-1 000400000
003 000000000

00-1 000004000

00000 0000000
00000 0000000
00000 0000000
00000 -1000004
00000 -1000400

00000 3000000
0000-1 0000040
0000-1 0004000

00003 0000000

(C-48)

(C-49)

(C-50)
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300000000000
-1 00000400000
-1 00000000040
dfp |V 00000000000

S5 = 34]0 00000000000
4

(C-51)

0 00000000000
H 30000000000
0-10000040000
(0 -1000000000 4

00-1000400000
003 000000000
00-1000004000
aM /000 000000000 ,
SE- = 3,/000 000000000 (C-52)
5

000 000000000
000-100040000
000 300000000

00 0-100000400

[0000-1 0000040
0000-1 0004000

00003 0000000
aM 100000 0000000
== ==[00000 0000000 (C-53)
0By, 2a

00000 0000000

00000 -1000004
00000 -1000000
00000 3000400




150

Ditferentiation of the 12x12 local stiffness matrix against the four components of

vector (G} gives

3k o M’
L T M M
= + N -
(MTIN) 3ET + arer (MM (C-54)
with all undifferentiated matrices previously known ([N] is not a function of {G}).
Straightforward differentiation of 9x12 [M] with respect to {G} is simplified since

[M] is not a function of G, G; or G3. Therefore,

o0l _ 3 _ 90 _

36, = 3G, - 3G, (€55

and

3b, 0 b, 0 —b, 0 4b, 0 0 0 4by O]
b, 0 3b, 0 by 0 4b, 0 4b; 0 0 0O
b, 0 -b, 0 3b, 0 O 0 4b, 0 4b, 0
S 0 3¢, 0 —a, 0 —a; 0 4a, 0 0 O 4a,
3G, —_;a—z 0 —a, 0 3a, 0 —a; 0 4a; 0 4a; 0 O (C-56)

0 —a, 0 —a, 0 3a; 0 0 0 4a, 0 4q
3a, 3b, —a, ~b, —a; —b3 4a, 4b, 0 0 4a; 4b,
—a, -b, 3a, 3b, —a, —b, 4a, 4b, da;4by 0 0
-a, b, —a, b, 3a; 3b; 0 0 4a, 4b, 4a, 4b)]

Thus, all necessary derivative matrices are known and d"‘L]/d( X can be calculated.
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d [A] dA[X]:

Since the 12x I8 LST transformation matrix is formed from two 6x9 CST transforma-
tion matrices, the derivative with respect to { X} is simply the CST's transformation deriv-

ative with respect to { X} (Appendix C.1.2) used twice as

)

] —_a_&\]_ (0]
J{X} (C-57)
3[A]

0 3

QU
(g

!

Q)
—~—
<
—

C.2 Global stress sensitivity with respect to any shape variable

Unlike displacement sensitivities, stress sensitivities can be calculated on an element

by element basis.
C.2.1 Rod element stress sensitivity

The derivative of the rod element’s scalar axial stress is

36 _ 3 3{x} 9o 9{Us}
3 = 3(XT 9F T 9(UsF B (C-38)

where {X} = {x], Y1, Z}. X2, Y2, 22} and Ug = {uy, v, Wy, up, v, Wy }.With the design
variable displacement and coordinate derivatives having been previously calculated, all

that is necessary is the derivative of the stress equation with respect to {X} and {Ug}. For

completeness, this results in
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C.2.2 CST element stress sensitivity

Using chain-rule differentiation on the CST stress equation yields

T

g
L P AU} AA] a8
P O = [Iﬂ [le [A]_B_B-_ + [D] [HJ BN {Ug} + DB—B—[}—[A] {Ug) (C-71)

xy

where {Ug} = {uy, vj. Wy, up, V2, Wa, u3, v3, w3} and all undifferentiated matrices are
previously known. The displacement sensitivity vector is also known as it was calculated
above. Therefore, to find the CST stress sensitivities with respect to shape, only the trans-
formation matrix derivative and [B] matrix derivative are needed. Fortunately, the trans-

formation derivative has already been found to be

ol _[ 23 agararer 24 Jatxy 2
3B ~ | 3TGY 3Ly (X} " 3{X¥ | B

Thus, to find d[B]/d(B), use the chain rule to get

d[B] _ 9[B] 3{G} a{L} 3 {X} C-73
B 9{G} d{L} a{X} op | €7

Here, the only unknown is d[B]/d{G} which can be explicitly found as



R) Ry
- 0 —=— 000
b2h b2h
1 [
0 — 0 -—200
b? B2
s 1 s
N S R A

154

L
bh
0 0 00
0

bh bh

000000
000000
000000

C.2.3 LST element stress sensitivity
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Using chain-rule differentiation on the LST stress equation yields the 9x1 stress

derivative vector with respect to any shape design variable B as
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3{Ug) 3[4

AL et - [0 100+ [ [] et

(C-78)

where all undifferentiated matrices are previously known. The displacement sensitivity

vector is also known as it was calculated in Appendix C.1. Therefore, to find the LST

stress sensitivities with respect to shape, only the transformation matrix derivative and

[M] matrix derivative are needed. Fortunately, the transformation derivative matrix has

already been found above to be

r
- [
W _|soy ©
9% oA
I (0] a——{x}-

2 (X} (C-79)

Thus, to find d[M]/d(B), use the chain rule as before to get

d[M) _ 3[MI3{B}2{G)3{L}  I[M)I(G}I(L} A(X) (C-80)

38 = (3{BYa(CT I(Ly 9(XT T 9{GY (LY A (X}’ OP

All of these derivative matrices have been previously calculated in Appendix C.
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C.3 Natural frequency sensitivity with respect to any shape variable

Differentiating the eigenvalue equation

(K -w?M] {®} = {0} (C-81)

with respect to any shape design variable B yields

AK] (M)
ot ¥ g el Je

= (C-82)
dp o7 [M] 0,

which is actually the sensitivity of the eigenvalue A = w?. The global mass sensitivity

matrix J [M] is the only new entry. To calculate this, individual element mass sensitiv-

ity matrices are calculated and then merged similar to what is done for the global stiffness

matrix.

C.3.1 Rod element mass matrix sensitivity

Differentiating the 6x6 global rod mass matrix (Appendix A.1.3) yields

a[Mrod] _ a[1‘4rod] a{X}

3B - (X1 OB (C-83)

a{X
where —E—B—} has been derived previously and {X} = {xy, y1, 21, X2, ¥2, Z2}. Explicit dif-

ferentiation of M4 with respect to {X} yields (since it’s length L is a function of {X})



8[;!T,l,,dl= gi ~x) (1
a_la__ﬁ;r;ﬂ =—%Z 2=y U]
a[;del:gfL‘ -x) ]
E_’_[_gf_);sg‘_l_]___.g‘z( -y)) 1]
d[M,

_pA
—W = E(ZZ—ZI) (7]

matrix.

C.3.2 CST element mass matrix sensitivity

Differentiating the 9x9 global CST mass matrix (Appendix A.2.3) yields
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(C-84)

(C-¥5)

(C-86)

(C-87)

(C-88)

(C-89)

where p is the density, A is the cross-sectional area, L is the length and I is a 6x6 identity



158

a[MCST] _ a[IWCST] a{X}

3B - 9(X] 9P (C-90)

. d{X . .
where éﬁ} has been derived previously and {X} = {X], ¥, 2|, X2, ¥2. Z2. X3. V3. Z3}.

Chain rule differentiation of Mgt with respect to { X yields (since it’s area *a’ is entry

#4 in the geometry vector {G} = {b. s, h. a})

d[Mysrl  9[Msr] 9{G} 9 {L}
d{X} ~ d9{G} 9{L}d{X} (C-91)

»

where {G} = {b, s, h,a} and {L} = {l;, I, I3}. Since Mgt is nota functionof b.sorh, a

more exact form gives

o[Mggrl  d[Megr]l 0a 3{L}
(Xt~ 9a d{LTo(X) (€92)
o{L}

with 3x9 matrix 575 already having been calculated. Thus
2 {X} y

(7] (C-93)

d[Mcsr] _ pr 9G4 9{L}
oX;  39{L} 9%,

where p is the density, t is the cross-sectional thickness and I is a 9x9 identity matrix.



APPENDIX D
SIZE VARIABLE SENSITIVITIES

D.1 Global displacement sensitivity with respect to any size variable

From the basic static equation [K]{U} = {F}. one can differentiate with respect to

any size design variable X to get

o{U} d[K] d{F} D-1
[I(JE)K+8K{U}=8K D

where [K] is the global stiffness matrix, {U} is the global displacement vector and {F} is
the global load vector.

For any conservative loading case in which the applied loads are independent of

model geometry,

d{U} _19[K]
— = KT 5= (0} (D-2)

Again, [K] and {U} are known and the stiffness matrix derivative must be formed via
merging element by element. But, since a sizing variable exists for each finite element,
the derivative of the global stiffness matrix of the system with respect to any one size
variable reduces d[K]/d(K) to a matrix whose only entries are that of the element’s stiffness
matrix derivative with respect to it’s own size variable. When this extremely sparse matrix

is multiplied by the corresponding entries in {U}, the global displacement derivative is

easily calculated.
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D.1.1 Rod element stiffness matrix derivative with respect to it’s area

Since [kg] for rod element ‘i” is a linear function of it’s area

, -

cx? CXCYy CXCZ —CX° —CXCy —Cxeg

cxey (:y2 cycz —cxcy —C)‘z —Ccycz
olkgl, El ..., . 22 |
— D cxcr Cycz €Z8 TCXCTZ —CYyCT —CZ (D-3)

aAi L —cx? —CXCY —CXCZ CX CXCY CXCZ

—cxcy —cy2 —CyczZ cxcy c_\‘z cycz

| —~CXCZ —CyCZ —022 cxcz cycz sz i

where E is the Modulus of Elasticity, L is the element length and cx, cy and cz are the

direction cosines given in Appendix A.l.1.

D.1.2 CST element stiffness matrix derivative with respect to it’s thickness

Since [kg) for CST element ‘1’ is a linear function of its thickness

(D-4)

a[ L] Ta[I:N'i'ES]‘.
[A],

W, = ]

d [kG]

= [,

where
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[ (b-5)2 v(b-s)h (b—s)s—v(b—s)h—(b—s)bd
8[/2] v(b-s)h h? vhs —h? —vbh 0
i _ E (b-1s)s vhs s —vhs -bs 0
o, 4a(l-v? —v(b-s)h —h? —vhs h? vhb 0
—(b=s5)b —vbh ~bs vhb bt 0
0 0 0 0 0 0
(D-5)
and
W (b-s)h  -h® hs 0 —bh
8[12] (b-s)h (b—s5)2 —(b=s)h (b-5)s0—-(b-s5)b
9i _ E -h? —(b-s)h K’ -hs 0  bh
g Ball+v)| 0 (h_g)s  -hs 20 —bs
0 0 0 0 0 0
| -bh  —(b-s5)b  bh -bs 0 b
(D-6)

ky and kg are the normal and shear stiffness matrices.
D.1.3 LST element stiffness matrix derivative with respect to it’s thickness

Since [kg] for LST element ‘i’ is a linear function of its thickness,

dlkgl, rdlk], |
= {1,

: $

where

a[kll r9[N];
5 = M M, (D-8)
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and
h"n Cy €y 2613 ¢y ¢y
Cp 26y € €3 26y ¢y
¢y €y 2¢y €3 €y 2¢p
NI, 2cy ¢y €p 26y €y cp
5 T T3l 2 2612 €2 26 ¢y

0 0 0 o0 O
0O 0 0 O0 0 O
o 0 o 0 0 O

D.2 Global stress sensitivity with respect to any size variable
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(D-9)

As with the stress shape variable sensitivities, the stress sizing variable sensitivities

are done on an element by element basis as follows:

D.2.1 Rod ‘I’ stress sensitivity with respect to rod ‘j’ area

Differentiating the rod element stress equation with respect to any rod element area

gives

do, do;, 9 {Ug}

'aTJ. ~ 3{U;} JA;

(D-10)

where the displacement derivative with respect to area ‘j° has been found previously. To

find the stress derivative with respect to its nodal coordinates, employ straightforward dif-

ferentiation. This result has been calculated in Appendix C.2.1.
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D.2.2 Rod ‘i’ stress sensitivity with respect to CST or LST ‘j’ thickness

Differentiating the rod element stress equation with respect to any CST or LST ele-

ment thickness gives

a0, do, J9{U.;}

i

;T AU o,

(D-11)

where the displacement derivative with respect to thickness ‘j* has been found previously.

The stress derivative with respect to its nodal coordinates, has been calculated in Appen-

dix C.2.1.

D.2.3 CST ‘i’ stress sensitivity with respect to rod ‘j’ area

Differentiating the CST element stress equation with respect to any rod element area

gives

d{U;}

QQ

(D-12)
J

0
oA,

.| - BERTRE

WA

Q

where the displacement derivative with respect to area ‘j” has been found previously.

Since [D], [B] and [A] are known, the derivative is easily found.
D.2.4 CST ‘i’ stress sensitivity with respect to CST ‘j’ thickness

Differentiating the CST element stress equation with respect to any CST or LST ele-
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ment thickness gives

a{u(,

(D-13)

5—{3 |- BEw;

where the displacement derivative with respect to thickness ‘j” has been found previously.

Since [D], [B] and [A] are previously known, the derivative is easily found.
D.2.5 LST ‘i’ stress sensitivity with respect to rod ‘j’ area

Differentiating the LST element stress equation with respect to any rod element area

gives
( O'xx 1
1)
c
A
o | iy awG} D-14
0A; % [Cil[M][A:' b4
o, 0
GII
[}
c
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where the displacement derivative with respect to area ‘j’ has been found previously.

Since [C~.'] , [M] and [/~\] are previously known, the derivative is easily found.
D.2.6 LST ‘i’ stress sensitivity with respect to LST ‘j’ thickness

Differentiating the LST element stress equation with respect to any CST or LST ele-

ment thickness gives

d{Ug}

o, | | = BB~ e

S
ey

where the displacement derivative with respect to thickness ‘j’ has been found previously.

Since [(?] , [M] and [7\] are previously known, the derivative is easily found. -

D.3 Natural frequency sensitivity with respect to any size variable

Differentiating the eigenvalue equation
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(K- wM] {®} = {0} (D-16)

with respect to any size design variable x yields

d (K] d[M]
g iT[ o ]q)i (D-17)
JK oT (M] 0,

which is actually the sensitivity of the eigenvalue A = w?. The global mass sensitivity

matrix J [aM] is the only new entry. The global stiffness sensitivity matrix has been

K
detailed in Appendix D.1 and the global mass sensitivity matrix has the same properties in
that it’s derivative with respect to any i’th size variable is just the i'th individual mass

matrix derivative with all other entries equal to zero.
D.3.1 Rod element mass matrix sensitivity with respect to it’s area

Since My,q for rod element ‘i’ is a linear function of it's area, differentiating the 6x6

global rod mass matrix (Appendix A.1.3) yields

a[Mrod] _ pL
—t = 5 (D-18)

[

where p is the density, L is the length and I is a 6x6 identity matrix.
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D.3.2 CST element mass matrix sensitivity with respect to it’s thickness

Since Mgt for CST element ‘i is a linear function of it's thickness, differentiating

the 9x9 global CST mass matrix (Appendix A.2.3) yields

0 (M 57l pA

where p is the density, A is the area and [ is 2 9x9 identity matrix



